• 제목/요약/키워드: Binary image

Search Result 987, Processing Time 0.03 seconds

A Local Feature-Based Robust Approach for Facial Expression Recognition from Depth Video

  • Uddin, Md. Zia;Kim, Jaehyoun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.3
    • /
    • pp.1390-1403
    • /
    • 2016
  • Facial expression recognition (FER) plays a very significant role in computer vision, pattern recognition, and image processing applications such as human computer interaction as it provides sufficient information about emotions of people. For video-based facial expression recognition, depth cameras can be better candidates over RGB cameras as a person's face cannot be easily recognized from distance-based depth videos hence depth cameras also resolve some privacy issues that can arise using RGB faces. A good FER system is very much reliant on the extraction of robust features as well as recognition engine. In this work, an efficient novel approach is proposed to recognize some facial expressions from time-sequential depth videos. First of all, efficient Local Binary Pattern (LBP) features are obtained from the time-sequential depth faces that are further classified by Generalized Discriminant Analysis (GDA) to make the features more robust and finally, the LBP-GDA features are fed into Hidden Markov Models (HMMs) to train and recognize different facial expressions successfully. The depth information-based proposed facial expression recognition approach is compared to the conventional approaches such as Principal Component Analysis (PCA), Independent Component Analysis (ICA), and Linear Discriminant Analysis (LDA) where the proposed one outperforms others by obtaining better recognition rates.

The Robust Derivative Code for Object Recognition

  • Wang, Hainan;Zhang, Baochang;Zheng, Hong;Cao, Yao;Guo, Zhenhua;Qian, Chengshan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.1
    • /
    • pp.272-287
    • /
    • 2017
  • This paper proposes new methods, named Derivative Code (DerivativeCode) and Derivative Code Pattern (DCP), for object recognition. The discriminative derivative code is used to capture the local relationship in the input image by concatenating binary results of the mathematical derivative value. Gabor based DerivativeCode is directly used to solve the palmprint recognition problem, which achieves a much better performance than the state-of-art results on the PolyU palmprint database. A new local pattern method, named Derivative Code Pattern (DCP), is further introduced to calculate the local pattern feature based on Dervativecode for object recognition. Similar to local binary pattern (LBP), DCP can be further combined with Gabor features and modeled by spatial histogram. To evaluate the performance of DCP and Gabor-DCP, we test them on the FERET and PolyU infrared face databases, and experimental results show that the proposed method achieves a better result than LBP and some state-of-the-arts.

Automatic Edge Detection Method for Mobile Robot Application (이동로봇을 위한 영상의 자동 엣지 검출 방법)

  • Kim Dongsu;Kweon Inso;Lee Wangheon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.5
    • /
    • pp.423-428
    • /
    • 2005
  • This paper proposes a new edge detection method using a $3{\times}3$ ideal binary pattern and lookup table (LUT) for the mobile robot localization without any parameter adjustments. We take the mean of the pixels within the $3{\times}3$ block as a threshold by which the pixels are divided into two groups. The edge magnitude and orientation are calculated by taking the difference of average intensities of the two groups and by searching directional code in the LUT, respectively. And also the input image is not only partitioned into multiple groups according to their intensity similarities by the histogram, but also the threshold of each group is determined by fuzzy reasoning automatically. Finally, the edges are determined through non-maximum suppression using edge confidence measure and edge linking. Applying this edge detection method to the mobile robot localization using projective invariance of the cross ratio. we demonstrate the robustness of the proposed method to the illumination changes in a corridor environment.

Development of Auto Sorting System for T Type Welding nut using A Vision Inspector (비전 검사기를 활용한 T형 용접너트 자동 선별시스템 개발)

  • Song, Han-Lim;Hur, Tae-Won
    • 전자공학회논문지 IE
    • /
    • v.48 no.1
    • /
    • pp.16-24
    • /
    • 2011
  • In this paper, we developed a auto sorting system for T type welding nut using a vision inspector. We used edge and thread detection with histogram of image which is captured by machine vision camera. We also used a binary morphology operation for a detection of spot. As a result we performed numeric inspection of 0.1mm accuracy. This is impossible in old sorting system and inspector with naked eye. Also, we reduced the manufacturing unit cost to 25% and improved a production efficiency to 330%.

A Real-time Vehicle Localization Algorithm for Autonomous Parking System (자율 주차 시스템을 위한 실시간 차량 추출 알고리즘)

  • Hahn, Jong-Woo;Choi, Young-Kyu
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.2
    • /
    • pp.31-38
    • /
    • 2011
  • This paper introduces a video based traffic monitoring system for detecting vehicles and obstacles on the road. To segment moving objects from image sequence, we adopt the background subtraction algorithm based on the local binary patterns (LBP). Recently, LBP based texture analysis techniques are becoming popular tools for various machine vision applications such as face recognition, object classification and so on. In this paper, we adopt an extension of LBP, called the Diagonal LBP (DLBP), to handle the background subtraction problem arise in vision-based autonomous parking systems. It reduces the code length of LBP by half and improves the computation complexity drastically. An edge based shadow removal and blob merging procedure are also applied to the foreground blobs, and a pose estimation technique is utilized for calculating the position and heading angle of the moving object precisely. Experimental results revealed that our system works well for real-time vehicle localization and tracking applications.

A Binary Classifier Using Fully Connected Neural Network for Alzheimer's Disease Classification

  • Prajapati, Rukesh;Kwon, Goo-Rak
    • Journal of Multimedia Information System
    • /
    • v.9 no.1
    • /
    • pp.21-32
    • /
    • 2022
  • Early-stage diagnosis of Alzheimer's Disease (AD) from Cognitively Normal (CN) patients is crucial because treatment at an early stage of AD can prevent further progress in the AD's severity in the future. Recently, computer-aided diagnosis using magnetic resonance image (MRI) has shown better performance in the classification of AD. However, these methods use a traditional machine learning algorithm that requires supervision and uses a combination of many complicated processes. In recent research, the performance of deep neural networks has outperformed the traditional machine learning algorithms. The ability to learn from the data and extract features on its own makes the neural networks less prone to errors. In this paper, a dense neural network is designed for binary classification of Alzheimer's disease. To create a classifier with better results, we studied result of different activation functions in the prediction. We obtained results from 5-folds validations with combinations of different activation functions and compared with each other, and the one with the best validation score is used to classify the test data. In this experiment, features used to train the model are obtained from the ADNI database after processing them using FreeSurfer software. For 5-folds validation, two groups: AD and CN are classified. The proposed DNN obtained better accuracy than the traditional machine learning algorithms and the compared previous studies for AD vs. CN, AD vs. Mild Cognitive Impairment (MCI), and MCI vs. CN classifications, respectively. This neural network is robust and better.

Proposal of a new method for learning of diesel generator sounds and detecting abnormal sounds using an unsupervised deep learning algorithm

  • Hweon-Ki Jo;Song-Hyun Kim;Chang-Lak Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.2
    • /
    • pp.506-515
    • /
    • 2023
  • This study is to find a method to learn engine sound after the start-up of a diesel generator installed in nuclear power plant with an unsupervised deep learning algorithm (CNN autoencoder) and a new method to predict the failure of a diesel generator using it. In order to learn the sound of a diesel generator with a deep learning algorithm, sound data recorded before and after the start-up of two diesel generators was used. The sound data of 20 min and 2 h were cut into 7 s, and the split sound was converted into a spectrogram image. 1200 and 7200 spectrogram images were created from sound data of 20 min and 2 h, respectively. Using two different deep learning algorithms (CNN autoencoder and binary classification), it was investigated whether the diesel generator post-start sounds were learned as normal. It was possible to accurately determine the post-start sounds as normal and the pre-start sounds as abnormal. It was also confirmed that the deep learning algorithm could detect the virtual abnormal sounds created by mixing the unusual sounds with the post-start sounds. This study showed that the unsupervised anomaly detection algorithm has a good accuracy increased about 3% with comparing to the binary classification algorithm.

A study on object recognition using morphological shape decomposition

  • Ahn, Chang-Sun;Eum, Kyoung-Bae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 1999.05a
    • /
    • pp.185-191
    • /
    • 1999
  • Mathematical morphology based on set theory has been applied to various areas in image processing. Pitas proposed a object recognition algorithm using Morphological Shape Decomposition(MSD), and a new representation scheme called Morphological Shape Representation(MSR). The Pitas's algorithm is a simple and adequate approach to recognize objects that are rotated 45 degree-units with respect to the model object. However, this recognition scheme fails in case of random rotation. This disadvantage may be compensated by defining small angle increments. However, this solution may greatly increase computational complexity because the smaller the step makes more number of rotations to be necessary. In this paper, we propose a new method for object recognition based on MSD. The first step of our method decomposes a binary shape into a union of simple binary shapes, and then a new tree structure is constructed which ran represent the relations of binary shapes in an object. finally, we obtain the feature informations invariant to the rotation, translation, and scaling from the tree and calculate matching scores using efficient matching measure. Because our method does not need to rotate the object to be tested, it could be more efficient than Pitas's one. MSR has an intricate structure so that it might be difficult to calculate matching scores even for a little complex object. But our tree has simpler structure than MSR, and easier to calculated the matchng score. We experimented 20 test images scaled, rotated, and translated versions of five kinds of automobile images. The simulation result using octagonal structure elements shows 95% correct recognition rate. The experimental results using approximated circular structure elements are examined. Also, the effect of noise on MSR scheme is considered.

  • PDF

Optical representation of binary data based on both intensity and phase modulation with a twisted-nematic liquid crystal display for holographic digital data storage (디지털 데이터의 홀로그래피 저장에서 뒤틀린 니매틱 액정 디스플레이로 세기 및 위상 변조에 기초한 2진 데이터의 광학적 표현)

  • 신동학;오용석;장주석
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2001.05a
    • /
    • pp.497-502
    • /
    • 2001
  • We propose a method to represent binary data by modulating both the intensity and the phase of uniform plane waves with a twisted-nematic liquid crystal display for holographic digital data storage especially in a disk-shaped recording medium. As far as intensity modulation is concerned, our method is not different from the conventional method, because binary bit values 0 and 1 are represented by the dark (off) and lit (on) states of the liquid crystal display pixels, respectively (or vice versa). With our method, however, the on pixels are also controlled so that the beams passing through them can have one of two different phase delays. If the difference of the two phase delays is close to 180 degrees, we can reduce the dc component of the data image and thus improve the beam intensity uniformity at the holographic recording plane when Fourier plane holograms are recorded. The feasibility of our method is experimentally demonstrated.

  • PDF

Novel optical representation of binary data to improve the beam intensity uniformity at the recording plane in the storage of Fourier holograms of digital data (디지털 데이터의 Fourier 홀로그램 저장에서 기록면의 빔세기 균일도 향상을 위한 2진 데이터의 새로운 광학적 표현)

  • 장주석;신동학;오용석
    • Korean Journal of Optics and Photonics
    • /
    • v.12 no.4
    • /
    • pp.339-344
    • /
    • 2001
  • We propose a method to represent binary data by modulating both the intensity and the phase of uniform plane waves with a twisted-nematic liquid crystal display for holographic digital data storage especially in a disk-shaped recording medium. As far as intensity modulation is concerned, our method is not different from the conventional method, because binary bit values 0 and 1 are represented by the dark (off) and lit (on) states of the liquid crystal display pixels, respectively (or vice versa). With our method, however, the on pixels are also controlled so that the beams passing through them can have one of two different phase delays. If the difference of the two phase delays is close to 180 degrees, we can reduce the dc component of the data image and thus improve the beam intensity uniformity at the holographic recording plane when Fourier plane holograms are recorded. The feasibility of our method is experimentally demonstrated. rated.

  • PDF