• 제목/요약/키워드: Binary classification

검색결과 472건 처리시간 0.024초

Classification and search for novel binary acentric molybdate and wolfra-mate crystals

  • Atuchin, V.V.;Kidyarov, B.I.
    • 한국결정성장학회지
    • /
    • 제12권6호
    • /
    • pp.323-328
    • /
    • 2002
  • The model of the shortest chemical bonds is applied for the classification of acentric simple and binary Mo(VI) and W(VI) oxides. It is shown that on the plane of the shortest chemical bonds the compounds are located into the rosette of three intersected ellipses. The correlation between the optical nonlinearity and combination of the bond lengths is discussed.

A Kernel Approach to Discriminant Analysis for Binary Classification

  • 신양규
    • Journal of the Korean Data and Information Science Society
    • /
    • 제12권2호
    • /
    • pp.83-93
    • /
    • 2001
  • We investigate a kernel approach to discriminant analysis for binary classification as a machine learning point of view. Our view of the kernel approach follows support vector method which is one of the most promising techniques in the area of machine learning. As usual discriminant analysis, the kernel method can discriminate an object most likely belongs to. Moreover, it has some advantage over discriminant analysis such as data compression and computing time.

  • PDF

출력 코딩 기반 다중 클래스 서포트 벡터 머신을 위한 특징 선택 기법 (A Novel Feature Selection Method for Output Coding based Multiclass SVM)

  • 이영주;이정진
    • 한국멀티미디어학회논문지
    • /
    • 제16권7호
    • /
    • pp.795-801
    • /
    • 2013
  • 서포트 벡터 머신은 뛰어난 일반화 성능에 힘입어 다양한 분야에서 의사 결정 나무나 인공 신경망에 비해 더 좋은 분류 성능을 보이고 있기 때문에 최근 널리 사용되고 있다. 서포트 벡터 머신은 기본적으로 이진 분류 문제를 위하여 설계되었기 때문에 서포트 벡터 머신을 다중 클래스 문제에 적용하기 위한 방법으로 다중 이진 분류기의 출력 결과를 이용하는 출력 코딩 방법이 주로 사용되고 있다. 그러나 출력 코딩 기반 서포트 벡터 머신에 사용된 기존 특징 선택 기법은 각 분류기의 정확도 향상을 위한 특징이 아니라 전체 분류 정확도 향상을 위한 특징을 선택하고 있다. 본 논문에서는 출력 코딩 기반 서포트 벡터 머신의 각 이진 분류기의 분류 정확도를 최대화하는 특징을 각각 선택하여 사용함으로써, 전체 분류 정확도를 향상시키는 특징 선택 기법을 제안한다. 실험 결과는 제안 기법이 기존 특징 선택 기법에 비하여 통계적으로 유의미한 분류 정확도 향상이 있었음을 보여주었다.

인터넷 라우터에서의 패킷 분류를 위한 2차원 이진 검색 트리 (Two-dimensional Binary Search Tree for Packet Classification at Internet Routers)

  • 이고은;임혜숙
    • 전자공학회논문지
    • /
    • 제52권6호
    • /
    • pp.21-31
    • /
    • 2015
  • 현재의 인터넷 사용자들은 실시간으로 다양한 멀티미디어 서비스를 제공 받길 원한다. 이에 네트워크 트래픽의 속도는 매우 빨라지고 있으며, 처리하여야 하는 데이터의 양은 해마다 기하급수적으로 증가하고 있다. 데이터는 '패킷'이라는 단위의 데이터 형식으로 전송되며, 패킷분류는 인터넷 라우터의 가장 어려운 기능 중 하나로 모든 패킷에 대하여 선속도로 처리되어야 한다. 다양한 패킷 분류 알고리즘 중, 영역분할 패킷분류 알고리즘은 5개의 패킷 헤더 필드 정보를 동시에 검색할 수 있는 효율적인 알고리즘이다. 영역 분할 사분 트라이는 가장 대표적인 영역분할 패킷분류 알고리즘으로 메모리 요구량이 적은 알고리즘이지 만, 빠른 검색성능을 보장하지 못하는 단점이 있다. 본 논문에서는, 영역 분할 사분 트라이의 단점을 이진 검색 트리를 사용해 보완하는 새로운 알고리즘을 제안한다. 실험을 통하여 제안하는 알고리즘은 입력과 비교되는 룰의 수에 있어 영역 분할 사분 트라이 보다 검색 성능이 향상됨을 보았다.

지지벡터기계를 이용한 다중 분류 문제의 학습과 성능 비교 (Learning and Performance Comparison of Multi-class Classification Problems based on Support Vector Machine)

  • 황두성
    • 한국멀티미디어학회논문지
    • /
    • 제11권7호
    • /
    • pp.1035-1042
    • /
    • 2008
  • 이진 분류기로서 지지벡터기계는 다양한 응용을 통해 이진 분류 문제에서 기존의 패턴 분류기들보다 우수한 성능을 보였다. 지지벡터기계의 바탕이 되는 최대 마진 분류 이론을 다중 분류 문제에 확장은 어려움이 있다. 이 논문에서는 다중 분류 문제를 위한 지지벡터기계의 학습 전략을 논의하였으며 성능 비교를 수행하였다. 학습 데이터의 분배 전략에 따라 지지벡터기계는 고유의 이진 분류 특징을 수정하지 않고 다중분류 문제에 쉴게 적용될 수 있다. 다양한 벤치마킹 데이터에 대해 선택된 학습 전략, 커널함수, 학습 소요시간 등에 따라 성능비교가 수행되었고 오류역전파 학습의 신경망의 테스트 결과와 비교되었다. 신경망 모델과 비교 실험에서 지지벡터기계는 일반적인 다중 분류 문제에 응용성과 효과가 있음을 보였다.

  • PDF

Dual-Encoded Features from Both Spatial and Curvelet Domains for Image Smoke Recognition

  • Yuan, Feiniu;Tang, Tiantian;Xia, Xue;Shi, Jinting;Li, Shuying
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권4호
    • /
    • pp.2078-2093
    • /
    • 2019
  • Visual smoke recognition is a challenging task due to large variations in shape, texture and color of smoke. To improve performance, we propose a novel smoke recognition method by combining dual-encoded features that are extracted from both spatial and Curvelet domains. A Curvelet transform is used to filter an image to generate fifty sub-images of Curvelet coefficients. Then we extract Local Binary Pattern (LBP) maps from these coefficient maps and aggregate histograms of these LBP maps to produce a histogram map. Afterwards, we encode the histogram map again to generate Dual-encoded Local Binary Patterns (Dual-LBP). Histograms of Dual-LBPs from Curvelet domain and Completed Local Binary Patterns (CLBP) from spatial domain are concatenated to form the feature for smoke recognition. Finally, we adopt Gaussian Kernel Optimization (GKO) algorithm to search the optimal kernel parameters of Support Vector Machine (SVM) for further improvement of classification accuracy. Experimental results demonstrate that our method can extract effective and reasonable features of smoke images, and achieve good classification accuracy.

초고차원 다범주분류를 위한 변수선별 방법 비교 연구 (A comparative study of feature screening methods for ultrahigh dimensional multiclass classification)

  • 이경은;김경희;신승준
    • 응용통계연구
    • /
    • 제30권5호
    • /
    • pp.793-808
    • /
    • 2017
  • 본 논문에서는 초고차원 자료의 다항분류를 위한 변수선별 방법에 대해 비교 연구를 진행하였다. 다항분류를 위한 변수선별 방법에는 일대일 혹은 일대다 비교를 통해 이항분류를 위한 방법을 확장시켜 적용하는 방법과 다항 반응 변수에 직접 적용할 수 있는 방법이 있다. 다항분류를 위한 변수선별 성능을 확인하기 위하여 여러가지 상황-설명변수의 꼬리가 두꺼운 경우, 신호변수와 잡음변수가 서로 연관된 경우, 결합분포상으로 연관되어 있지만 주변분포 상으로는 연관되어 있지 않은 경우, 다범주 반응변수의 분포가 불균형인 경우-을 가정하고 모의실험을 진행하였고, 실제 자료에도 적용해 보았다. 그 결과, 모형 가정을 필요로 하지 않는 방법들이 안정적인 성능을 보이는 것을 확인하였다.

Classification via principal differential analysis

  • Jang, Eunseong;Lim, Yaeji
    • Communications for Statistical Applications and Methods
    • /
    • 제28권2호
    • /
    • pp.135-150
    • /
    • 2021
  • We propose principal differential analysis based classification methods. Computations of squared multiple correlation function (RSQ) and principal differential analysis (PDA) scores are reviewed; in addition, we combine principal differential analysis results with the logistic regression for binary classification. In the numerical study, we compare the principal differential analysis based classification methods with functional principal component analysis based classification. Various scenarios are considered in a simulation study, and principal differential analysis based classification methods classify the functional data well. Gene expression data is considered for real data analysis. We observe that the PDA score based method also performs well.

다수의 특징과 이진 분류 트리를 이용한 장면 전환 검출 (Shot Change Detection Using Multiple Features and Binary Decision Tree)

  • 홍승범;백중환
    • 한국통신학회논문지
    • /
    • 제28권5C호
    • /
    • pp.514-522
    • /
    • 2003
  • 본 논문에서는 다수의 특징과 이진 분류 트리를 이용하여 장면 전환점(shot change)을 검출하는 향상된 방식을 제안한다. 기존의 장면 전환점 검출 방식에서는 인접한 프레임간에 단일 특징과 고정된 임계값을 주로 사용하였다. 하지만, 비디오 시퀀스 내의 장면 전환점에서는 인접한 프레임간의 내용(content)인 컬러, 모양, 배경 혹은 질감 등이 동시에 변화한다. 따라서 본 논문에서는 단일 특징보다는 상호 보완 관계를 갖는 다수의 특징을 이용하여 장면 전환점을 효율적으로 검출한다. 그리고 장면 전환점의 분류를 위해서는 이진 분류 트리(binary classification tree)를 이용한다. 이 분류 결과에 따라 장면 전환점 검출에 사용될 중요한 특징들을 선별하고, 각 특징들의 최적 임계값을 구한다. 또한, 분류 성능을 확인하기 위해 교차검증(cross-validation)과 드롭 케이스(drop-case)를 수행하였다. 실험 결과, 제안된 기법이 단일 특징들만을 사용한 기존의 방법들 보다 El(Evaluated Index, 성능평가지수)에서 평균 2%의 성능이 향상됨을 알 수 있었다.

블룸 필터를 사용한 길이에 대한 2차원 이진검색 패킷 분류 알고리즘 (Two-Dimensional Binary Search on Length Using Bloom Filter for Packet Classification)

  • 최영주;임혜숙
    • 한국통신학회논문지
    • /
    • 제37권4B호
    • /
    • pp.245-257
    • /
    • 2012
  • 패킷 분류는 인터넷 라우터가 수행하는 가장 중요한 기능 중 하나로써 들어오는 모든 패킷을 선 속도로 처리하기를 요구한다. 영역분할을 사용한 사분트라이 구조에 길이 별 이진 검색을 적용한 알고리즘은 2차원 필드를 동시에 검색하면서 검색영역을 반으로 줄여나갈 수 있으므로 매우 효율적인 구조이다. 하지만 트라이의 레벨에 노드가 없는 경우에도 해시 테이블에 접근하는 문제점이 존재한다. 따라서 본 논문에서는 해시 메모리로의 불필요한 접근을 줄이기 위해서 영역분할을 사용한 사분 트라이의 길이별 이진 검색에 블룸 필터를 적용하는 패킷분류 구조를 제안한다. 현재 사용되는 ACL, FW, IPC 룰 타입의 1000, 5000, 10000개의 룰 셋으로 실험한 결과, 블룸 필터를 적용함으로써 검색 성능이 21~33%까지 향상되는 결과를 얻었다.