• Title/Summary/Keyword: Binary Classifier

Search Result 133, Processing Time 0.023 seconds

Region-Based Facial Expression Recognition in Still Images

  • Nagi, Gawed M.;Rahmat, Rahmita O.K.;Khalid, Fatimah;Taufik, Muhamad
    • Journal of Information Processing Systems
    • /
    • v.9 no.1
    • /
    • pp.173-188
    • /
    • 2013
  • In Facial Expression Recognition Systems (FERS), only particular regions of the face are utilized for discrimination. The areas of the eyes, eyebrows, nose, and mouth are the most important features in any FERS. Applying facial features descriptors such as the local binary pattern (LBP) on such areas results in an effective and efficient FERS. In this paper, we propose an automatic facial expression recognition system. Unlike other systems, it detects and extracts the informative and discriminant regions of the face (i.e., eyes, nose, and mouth areas) using Haar-feature based cascade classifiers and these region-based features are stored into separate image files as a preprocessing step. Then, LBP is applied to these image files for facial texture representation and a feature-vector per subject is obtained by concatenating the resulting LBP histograms of the decomposed region-based features. The one-vs.-rest SVM, which is a popular multi-classification method, is employed with the Radial Basis Function (RBF) for facial expression classification. Experimental results show that this approach yields good performance for both frontal and near-frontal facial images in terms of accuracy and time complexity. Cohn-Kanade and JAFFE, which are benchmark facial expression datasets, are used to evaluate this approach.

CRF-Based Figure/Ground Segmentation with Pixel-Level Sparse Coding and Neighborhood Interactions

  • Zhang, Lihe;Piao, Yongri
    • Journal of information and communication convergence engineering
    • /
    • v.13 no.3
    • /
    • pp.205-214
    • /
    • 2015
  • In this paper, we propose a new approach to learning a discriminative model for figure/ground segmentation by incorporating the bag-of-features and conditional random field (CRF) techniques. We advocate the use of image patches instead of superpixels as the basic processing unit. The latter has a homogeneous appearance and adheres to object boundaries, while an image patch often contains more discriminative information (e.g., local image structure) to distinguish its categories. We use pixel-level sparse coding to represent an image patch. With the proposed feature representation, the unary classifier achieves a considerable binary segmentation performance. Further, we integrate unary and pairwise potentials into the CRF model to refine the segmentation results. The pairwise potentials include color and texture potentials with neighborhood interactions, and an edge potential. High segmentation accuracy is demonstrated on three benchmark datasets: the Weizmann horse dataset, the VOC2006 cow dataset, and the MSRC multiclass dataset. Extensive experiments show that the proposed approach performs favorably against the state-of-the-art approaches.

Detection of Crowd Escape Behavior in Surveillance Video (감시 영상에서 군중의 탈출 행동 검출)

  • Park, Junwook;Kwak, Sooyeong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.8
    • /
    • pp.731-737
    • /
    • 2014
  • This paper presents abnormal behavior detection in crowd within surveillance video. We have defined below two cases as a abnormal behavior; first as a sporadically spread phenomenon and second as a sudden running in same direction. In order to detect these two abnormal behaviors, we first extract the motion vector and propose a new descriptor which is combined MHOF(Multi-scale Histogram of Optical Flow) and DCHOF(Directional Change Histogram of Optical Flow). Also, binary classifier SVM(Support Vector Machine) is used for detection. The accuracy of the proposed algorithm is evaluated by both UMN and PETS 2009 dataset and comparisons with the state-of-the-art method validate the advantages of our algorithm.

Visual Object Tracking Fusing CNN and Color Histogram based Tracker and Depth Estimation for Automatic Immersive Audio Mixing

  • Park, Sung-Jun;Islam, Md. Mahbubul;Baek, Joong-Hwan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.3
    • /
    • pp.1121-1141
    • /
    • 2020
  • We propose a robust visual object tracking algorithm fusing a convolutional neural network tracker trained offline from a large number of video repositories and a color histogram based tracker to track objects for mixing immersive audio. Our algorithm addresses the problem of occlusion and large movements of the CNN based GOTURN generic object tracker. The key idea is the offline training of a binary classifier with the color histogram similarity values estimated via both trackers used in this method to opt appropriate tracker for target tracking and update both trackers with the predicted bounding box position of the target to continue tracking. Furthermore, a histogram similarity constraint is applied before updating the trackers to maximize the tracking accuracy. Finally, we compute the depth(z) of the target object by one of the prominent unsupervised monocular depth estimation algorithms to ensure the necessary 3D position of the tracked object to mix the immersive audio into that object. Our proposed algorithm demonstrates about 2% improved accuracy over the outperforming GOTURN algorithm in the existing VOT2014 tracking benchmark. Additionally, our tracker also works well to track multiple objects utilizing the concept of single object tracker but no demonstrations on any MOT benchmark.

A Study on Identification of Track Irregularity of High Speed Railway Track Using an SVM (SVM을 이용한 고속철도 궤도틀림 식별에 관한 연구)

  • Kim, Ki-Dong;Hwang, Soon-Hyun
    • Journal of Industrial Technology
    • /
    • v.33 no.A
    • /
    • pp.31-39
    • /
    • 2013
  • There are two methods to make a distinction of deterioration of high-speed railway track. One is that an administrator checks for each attribute value of track induction data represented in graph and determines whether maintenance is needed or not. The other is that an administrator checks for monthly trend of attribute value of the corresponding section and determines whether maintenance is needed or not. But these methods have a weak point that it takes longer times to make decisions as the amount of track induction data increases. As a field of artificial intelligence, the method that a computer makes a distinction of deterioration of high-speed railway track automatically is based on machine learning. Types of machine learning algorism are classified into four type: supervised learning, unsupervised learning, semi-supervised learning, and reinforcement learning. This research uses supervised learning that analogizes a separating function form training data. The method suggested in this research uses SVM classifier which is a main type of supervised learning and shows higher efficiency binary classification problem. and it grasps the difference between two groups of data and makes a distinction of deterioration of high-speed railway track.

  • PDF

Stress Detection and Classification of Laying Hens by Sound Analysis

  • Lee, Jonguk;Noh, Byeongjoon;Jang, Suin;Park, Daihee;Chung, Yongwha;Chang, Hong-Hee
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.4
    • /
    • pp.592-598
    • /
    • 2015
  • Stress adversely affects the wellbeing of commercial chickens, and comes with an economic cost to the industry that cannot be ignored. In this paper, we first develop an inexpensive and non-invasive, automatic online-monitoring prototype that uses sound data to notify producers of a stressful situation in a commercial poultry facility. The proposed system is structured hierarchically with three binary-classifier support vector machines. First, it selects an optimal acoustic feature subset from the sound emitted by the laying hens. The detection and classification module detects the stress from changes in the sound and classifies it into subsidiary sound types, such as physical stress from changes in temperature, and mental stress from fear. Finally, an experimental evaluation was performed using real sound data from an audio-surveillance system. The accuracy in detecting stress approached 96.2%, and the classification model was validated, confirming that the average classification accuracy was 96.7%, and that its recall and precision measures were satisfactory.

An Optimized CLBP Descriptor Based on a Scalable Block Size for Texture Classification

  • Li, Jianjun;Fan, Susu;Wang, Zhihui;Li, Haojie;Chang, Chin-Chen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.1
    • /
    • pp.288-301
    • /
    • 2017
  • In this paper, we propose an optimized algorithm for texture classification by computing a completed modeling of the local binary pattern (CLBP) instead of the traditional LBP of a scalable block size in an image. First, we show that the CLBP descriptor is a better representative than LBP by extracting more information from an image. Second, the CLBP features of scalable block size of an image has an adaptive capability in representing both gross and detailed features of an image and thus it is suitable for image texture classification. This paper successfully implements a machine learning scheme by applying the CLBP features of a scalable size to the Support Vector Machine (SVM) classifier. The proposed scheme has been evaluated on Outex and CUReT databases, and the evaluation result shows that the proposed approach achieves an improved recognition rate compared to the previous research results.

Novel Method for Face Recognition using Laplacian of Gaussian Mask with Local Contour Pattern

  • Jeon, Tae-jun;Jang, Kyeong-uk;Lee, Seung-ho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.11
    • /
    • pp.5605-5623
    • /
    • 2016
  • We propose a face recognition method that utilizes the LCP face descriptor. The proposed method applies a LoG mask to extract a face contour response, and employs the LCP algorithm to produce a binary pattern representation that ensures high recognition performance even under the changes in illumination, noise, and aging. The proposed LCP algorithm produces excellent noise reduction and efficiency in removing unnecessary information from the face by extracting a face contour response using the LoG mask, whose behavior is similar to the human eye. Majority of reported algorithms search for face contour response information. On the other hand, our proposed LCP algorithm produces results expressing major facial information by applying the threshold to the search area with only 8 bits. However, the LCP algorithm produces results that express major facial information with only 8-bits by applying a threshold value to the search area. Therefore, compared to previous approaches, the LCP algorithm maintains a consistent accuracy under varying circumstances, and produces a high face recognition rate with a relatively small feature vector. The test results indicate that the LCP algorithm produces a higher facial recognition rate than the rate of human visual's recognition capability, and outperforms the existing methods.

Forgery Detection Scheme Using Enhanced Markov Model and LBP Texture Operator in Low Quality Images (저품질 이미지에서 확장된 마르코프 모델과 LBP 텍스처 연산자를 이용한 위조 검출 기법)

  • Agarwal, Saurabh;Jung, Ki-Hyun
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.31 no.6
    • /
    • pp.1171-1179
    • /
    • 2021
  • Image forensic is performed to check image limpidness. In this paper, a robust scheme is discussed to detect median filtering in low quality images. Detection of median filtering assists in overall image forensic. Improved spatial statistical features are extracted from the image to classify pristine and median filtered images. Image array data is rescaled to enhance the spatial statistical information. Features are extracted using Markov model on enhanced spatial statistics. Multiple difference arrays are considered in different directions for robust feature set. Further, texture operator features are combined to increase the detection accuracy and SVM binary classifier is applied to train the classification model. Experimental results are promising for images of low quality JPEG compression.

An enhanced feature selection filter for classification of microarray cancer data

  • Mazumder, Dilwar Hussain;Veilumuthu, Ramachandran
    • ETRI Journal
    • /
    • v.41 no.3
    • /
    • pp.358-370
    • /
    • 2019
  • The main aim of this study is to select the optimal set of genes from microarray cancer datasets that contribute to the prediction of specific cancer types. This study proposes the enhancement of the feature selection filter algorithm based on Joe's normalized mutual information and its use for gene selection. The proposed algorithm is implemented and evaluated on seven benchmark microarray cancer datasets, namely, central nervous system, leukemia (binary), leukemia (3 class), leukemia (4 class), lymphoma, mixed lineage leukemia, and small round blue cell tumor, using five well-known classifiers, including the naive Bayes, radial basis function network, instance-based classifier, decision-based table, and decision tree. An average increase in the prediction accuracy of 5.1% is observed on all seven datasets averaged over all five classifiers. The average reduction in training time is 2.86 seconds. The performance of the proposed method is also compared with those of three other popular mutual information-based feature selection filters, namely, information gain, gain ratio, and symmetric uncertainty. The results are impressive when all five classifiers are used on all the datasets.