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I. INTRODUCTION 
 

Figure/ground segmentation aims at partitioning an image 

into regions of coherent properties as a means for separating 

objects from their backgrounds. Considerable effort has 

been made to develop many advanced techniques in the 

recent years, where learning segmentation has attracted 

considerable attention of researchers because of its signif-

icant performance in classification applications. Further, 

probabilistic graphical models have also been remarkably 

successful in segmentation applications.  

In any image system, feature representation is crucial to 

enhancing the system performance. How to manifest an 

image and how to capture salient properties of the object 

regions are still challenging problems. The bag-of-features 

(BoF) model [1-3] has been widely used in the field of 

image processing. The model treats an image as a collection 

of unordered appearance descriptors extracted from local 

patches, quantizes them into discrete ‘visual words,’ and 

then computes a compact histogram representation. In this 

work, we propose a patch-level BoF model to effectively 

represent an image patch from raw image data. By pixel-

level dictionary learning, sparse coding, and spatial pyramid 

matching, the feature representation can capture the salient 

properties of the image patch, thus resulting in high patch-

wise segmentation accuracy. 

Learning segmentation converts the image segmentation 

problem into a data clustering problem of image elements. 

One of the core challenges for machine learning is to 

discover what kind of information can be learned from the 
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Abstract 

In this paper, we propose a new approach to learning a discriminative model for figure/ground segmentation by incorporating 

the bag-of-features and conditional random field (CRF) techniques. We advocate the use of image patches instead of 

superpixels as the basic processing unit. The latter has a homogeneous appearance and adheres to object boundaries, while an 

image patch often contains more discriminative information (e.g., local image structure) to distinguish its categories. We use 

pixel-level sparse coding to represent an image patch. With the proposed feature representation, the unary classifier achieves a 

considerable binary segmentation performance. Further, we integrate unary and pairwise potentials into the CRF model to 

refine the segmentation results. The pairwise potentials include color and texture potentials with neighborhood interactions, 

and an edge potential. High segmentation accuracy is demonstrated on three benchmark datasets: the Weizmann horse dataset, 

the VOC2006 cow dataset, and the MSRC multiclass dataset. Extensive experiments show that the proposed approach 

performs favorably against the state-of-the-art approaches.  
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data sources and cluster this data into segments depicting 

the same object. Ren and Malik [4] proposed a classification 

model for segmentation, which feeds the Gestalt grouping 

cues into a linear classifier to discriminate between good 

and bad segmentation. Wu and Nevatia [5] developed a 

method to simultaneously detect and segment objects by 

boosting the edgelet feature classifiers. Duygulu et al. [6] 

modeled object recognition as a process of annotating image 

regions with words, and learning a mapping between region 

types and keywords by using an EM algorithm.  

Probabilistic graphical models usually construct a cost 

function on the basis of some image constraints and 

formulate the image segmentation problem as a stochastic 

optimization problem. A condition random field (CRF) 

provides a principled approach to incorporating data-

dependent interactions; the complex joint probability 

distribution need not be modeled in this case. In this work, 

we use the CRF model to fuse multiple visual cues. For the 

CRF model, the definition of unary and pairwise potentials 

is very important. Previously, the unary potential was 

directly defined on feature spaces [7]. Lately, researchers 

have paid more attention on using a classifier to generate a 

unary potential [8-15], and most of them prefer using a pixel 

or a superpixel as the basic processing unit. In contrast, we 

use a regular image patch. Image patches on object 

boundaries contain rich local structure information of an 

object (see Fig. 1). While superpixels usually have a homo-

geneous appearance and an almost uniform size along with 

edge preservation, particularly for weak boundaries, these 

properties weaken the discriminative capability of the unary 

classifier when the superpixel is taken as the sampling unit. 

Our main contributions in this paper are twofold. First, 

we use an image patch as a sample of a unary classifier and 

propose an upgrade patch feature representation based on 

pixel-level sparse coding, which can capture more structure 

information of the local contour of objects. Second, we 

propose the color and texture pairwise potentials with 

neighborhood interactions and an edge potential repre-

senting edge continuity, which are validated to be very 

effective in our experiments. 

 

 

Fig. 1. Some image patches on object boundaries. Ignoring their color 

information, we find that there are many similar spatial structures, which 
can be considered the common characteristics of the objects.  

II. CONDITIONAL RANDOM FIELDS 
 

CRFs are probabilistic models for segmenting data with 

structured labels [16], which are defined on a two-

dimensional discrete lattice, every site on which 

corresponds to a graph node. Let ( , )G V E  be an 

undirected graph with image patches as nodes V  and the 

links between pairs of nodes as edges E . CRFs directly 

model the distribution | , ,P L I w v  of node labels L  

conditional on image data I  for node parameters w  and 

edge parameters v . We are interested in finding the labels 

{ }
i i
l

V
L , where 

i
l  denotes the label of the ith

 node. In 

this work, we are concerned with binary segmentation 

(foreground and background), i.e., 1 1{ , }
i
l . The joint 

distribution over the labels L  given the observations I  

can be expressed as follows: 

1
| , , exp , , , , ,

i i ij i j
i i j i

P A l I l l
z V V

L I w v I w I v ,  (1) 

where z  represents a normalized constant known as the 

partition function, 
i
 denotes the set of neighbors of the 

ith
 node in graph G , and 

i
A  and 

ij
I  indicate the unary 

and pairwise potentials, respectively. The unary potential is 

modeled using a local discriminative model that decides the 

association of a given node to a certain class, ignoring the 

interaction of its neighbors. In contrast, the pairwise 

potential is regarded as a data-dependent smoothing 

function that denotes the interaction between two nodes. 

Both terms explicitly depend on a predefined set of features 

from I . 

 
 

III. MAIN WORK 
 

We use a CRF model to learn the conditional distribution 

over figure/ground labeling given an image, which allows us 

to incorporate different levels and different types of features 

in a single unified model. 

 
A. Unary Potentials 

 

In this work, the unary potentials are defined by the 

prediction probability obtained from a linear support vector 

machine (SVM) classifier. Different from the existing 

feature descriptions, we train a pixel-level over-complete 

dictionary to sparsely represent image patches in a high-

dimensional space. 

 

1) Pixel-Level Texture Descriptor 

Gabor wavelets have received considerable attention 

because of biological reasons and their optimal resolution in 

both frequency and spatial domains. The Gabor wavelet 

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.Bo%20Wu.QT.&newsearch=partialPref
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representation can capture the local structure corresponding 

to the spatial scale, spatial localization, and orientation 

selectivity. It can characterize the spatial frequency structure 

in the image, while preserving the information of spatial 

relations. However, many existing image representation 

approaches in the Gabor domain merely consider the 

magnitude information. In this work, we proposed a new 

pixel-level feature descriptor, which fuses the Gabor 

magnitude and the Gabor phase.  

To eliminate local noise interference, a simple smoothing 

filter is used for removing image noise in advance. Then, we 

perform the Gabor transform in D directions and S scales on 

a given gray image, and respectively, denote the magnitude 

response and the phase response in direction  and scale 

as 
,

and 
,

. Further, the 2 phase space is 

uniformly quantized into J  intervals as 

,min ,min
[ , ]

j j j
Φ , 1,...,j J . 2 /J
represents the quantization step, and 

,minj
 denotes the 

margin value between two phase intervals 
1j

Φ  and 
j

Φ . 

Suppose that phase response 
,

 belongs to the jth
 interval 

j
Φ . Then, we compute Eq. (2) to get a J-dimensional 

vector 
,
y  in direction  and scale  as follows: 

 
10 0 0 0

, , ,
[ ,..., , , , ,..., ]j jy yy ,        (2) 

where 

1

, , ,min ,

, , ,min ,

cos( )

cos( ( ))

j

j
j

j

y

y
. 

An example of diagram 8J  is shown in Fig. 2, in 

which the phase space is quantized into eight intervals and 

4/ . Assuming the phase response
2,

Φ , we 

can update the margin value as 
1

0
,min

, 

2
4

,min
,…, 

8
7 4

,min
; the J-dimensional vector 

2 30 0 0 0 0 0
, , ,
[ , , , , , , , ]y yy . 

We concatenate all vectors y ,  of the given D directions 

and S scales as the pixel-level descriptor 

1 1 1 2 D Sy y y y, , ,[ , ,..., ] . The D S J -dimensional 

feature vector not only describes the distribution of the 

phase response in each scale and direction but also reflects 

the magnitude response. 

 

2) Pixel-Level Dictionary Learning and Coding 

Sparse representations have demonstrated considerable 

success in numerous applications, and the sparse modeling 

of signals has been proven to be very effective in signal 

reconstruction and classification. We randomly sample some 

pixels from the training image set to learn an over-complete 

pixel-level dictionary. Assuming that we collect N training 

samples, we define a matrix 
NY R  as the columns of 

samples: 

1 2
= [ , ,..., ],

Np
y y yY             (3) 

where iy  stands for the -dimensional texture feature of 

the ith
 sample.  

Using an over-complete dictionary 
LD R , which 

contains L atoms as column vectors, we can approximate 

the observed sample y  well by using a sparse linear 

combination of these atoms. In particular, there exists a 

sparse coefficient vector x  such that y  can be 

approximated as y xD , where the vector x  

represents the weighted contribution of these atoms when 

reconstructing the observed sample. Given the training 

samples, we can learn the dictionary D  by solving the 

following optimization problem:   

  
2

2 1
1

|| || || ||min
N

i i i
i

D,X
Dy x x ,        (4) 

where  denotes a balance parameter and the second term 

enforces x  to have a small number of nonzero elements. 

The optimization problem is convex in D  or X  while 

fixing the other, but not in both simultaneously [17]. We 

solve it by alternating the optimization over D  and X ; 

the dictionary D  can be initialized by randomly sampling 

L columns from Y or by K-means clustering. When fixing 

D , the optimization becomes a standard sparse coding 

problem, which can be solved very efficiently by using the 

feature-sign search algorithm. When fixing X , the problem 

reduces to a least squares problem (as shown in Eq. (5)), 

which can be solved by using the Lagrange dual algorithm. 

2

2
1

|| ||min
N

i i
i

D
Dy x .             (5) 

P

0 ρ

2Φ3Φ
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Fig. 2. An example diagram of 8J ; phase response 
,

belongs to the 2
nd

 phase interval 
2

Φ . 
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Once the over-complete dictionary D  is given, the 

texture feature y  of each pixel can be coded as L-

dimensional sparse vector x  by solving the following l1-

norm regularization problem: 

2

2 1
|| || || ||min D

x
y x x .        (6) 

 

3) Patch Feature Representation 

The pivotal role of the unary potential in the CRF-based 

segmentation model has been demonstrated. It can be taken 

as a local decision term, which decides the association of a 

given graph node to a certain class. Usually, the use of the 

unary classifier alone leads to high accuracy as compared to 

the full CRF model as it can segment most parts of an object 

and loses only some details of the object boundaries. 

In this work, we integrate the texture feature and the color 

feature to represent an image patch. We partition a patch 

into 1×2, 2×2 segments in two different scales, and then, 

compute the max pooling vector of the sparse codes of 

pixels within each of the five segments. We finally 

concatenate all the vectors to form a vector representation of 

the texture feature. The so-called spatial pyramid matching 

has had remarkable success in image classification 

applications. Color information is very useful for identifying 

the classes of image patches. For example, backgrounds 

(e.g., sky, water, grass, and tree) are usually distinguishable 

from objects (e.g., cow, sheep, and bird) in color. For a 

patch, we compute 64-bin histograms in each CIE Lab color 

channel as its color feature and then, concatenate the texture 

vector and the color vector to form the final feature 

representation. In our experiments, we fixed the size of 

dictionary D  as 2048; thus, the dimension of the patch 

feature is 2048 5 64 3  10432 . We also find that max 

pooling outperforms the other alternative pooling methods. 

 

4) Unary Potential Computation 

We train a binary linear SVM classifier to predict the 

figure/ground probabilities of an image patch, which are 

used for computing the unary potential. However, the 

boundaries of the foreground segmented by the CRF model 

using patches as graph nodes have a blocking effect. To 

generate results close to the ground truth, we split patches 

into some perceptually meaningful entities by using the 

over-segmentation boundary map, which is generated by an 

existing region merging method [18]. As shown in Fig. 3, a 

patch is split into several regions. These regions are 

considered the graph nodes, and their unary potential values 

are defined as the corresponding prediction probability of 

the host patch. That is, the regions split from a patch are 

assigned the same probability. In particular, the unary 

potential in Eq. (1) is defined as follows: 

 ( , , ) log( ( ))
i i i
A l P l |I w I ,         (7) 

where ( )
i

P l | I  denotes the local class posterior, that is, 

the prediction probability given by the unary classifier. 

 
B. Pairwise Potentials 
 

After the unary binary classification, we can already 

obtain good segmentation results, but the classifier 

separately processes each image patch. The mutual 

dependence among neighboring patches is ignored, which 

results in some neighboring patches with a similar 

appearance being possibly improperly labeled as opposite 

classes (see Fig. 4). Therefore, as contextual knowledge is 

necessary for image segmentation, we define the pairwise 

potential to address this problem. In this work, the pairwise 

penalty 
ij
I  is defined as the weight 

ij
w  of a graph edge, 

that is,  

 ( , , , ) ( )
ij i j ij i j
I l l w l lI v I .            (8) 

In image segmentation, the weights encode a graph 

affinity such that a pair of nodes with a high weight edge is 

considered to be strongly connected and edges with low 

weights represent the nearly disconnected nodes. We exploit 

the color, texture, and edge cues to model the connection 

between nodes and incorporate the three types of potentials 

in a unified CRF framework using pre-learned parameters. 

Assuming that the superscripts c, t, and e denote the color, 

texture, and edge, respectively, we can rewrite ( )
ij
w I  as 

follows: 

 
(a)                     (b)                  (c) 

Fig. 3. Split patches. (a) Patch partition, where each square stands 

for an image patch. (b) Overlaying a patch partition on the image 
segmentation. (c) Local magnifying map, where an irregular region 
stands for a split patch. 

 

 

Fig. 4. Unary binary segmentation results (above: input images, below: 

binary classification results). 
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T( ) [ ][ ( ) ( ) ( )]c t e c t e

ij ij ij ij ij
w g v v v g g gI v I I I ,  (9) 

where ( )
ij
g I  represents a distance function defined over 

node pairs ( , )i j . ( )
ij
w I  synthetically reflects the 

connectivity of nodes i  and j  on multiple feature spaces. 

 

1) Color Potential and Texture Potential 

Color information is an essential and typical repre-

sentation for images and is a key element for distinguishing 

objects. Mean and histogram are two common color 

descriptors. Mean only describes the average color 

component rather than the color distribution in a region. We 

use the CIE Lab histogram as a color descriptor for 

computing the color potential. Similarly, each channel is 

uniformly quantified into 64 levels, and then, three channels 

are concatenated to form a 192-dimensional color vector. 

The experimental comparison demonstrates that the histo-

gram descriptor is more effective than the mean descriptor, 

increasing the overall pixel-wise labeling accuracy by 3.8%. 

Every region in natural images is not isolated and is 

strongly connected with its adjacent regions. When 

computing ( )c
ij
g I , it is unreasonable to only use the node 

pair ( , )i j  and ignore the neighboring nodes. Therefore, we 

consider the neighborhood interactions in the main steps 

summarized in Algorithm 1. 

 

------------------------------------------------------------------ 

Algorithm 1 Color potential computation 

------------------------------------------------------------------ 

input: An image represented as a graph   

1: for i = 1 to N do 

2:      compute color histogram ih of the ith
 node 

3: end for 

4: for i = 1 to N do  

5:      
2

,
arg min ( , )

i
i i kk k
m h h  

6: end for 

7: for i V  do 

8:       ( , )c
ij
g D i j  

i
j   

9: end for  

output: Color potential { | ( , ) }c c
ij
g i jg E  

------------------------------------------------------------------ 

where 2 2 2( , ) [ ( , ) ( , )]/
i ji m j i j m

D i j h h h h h h . 
 

Similarly, we can compute the texture potential ( )t
ij
g I . 

Further, ih  stands for a texture histogram, which is 

computed as follows:  

1
i kk nodeiK
h x ,         (10) 

 

where K  denotes the number of pixels in the region node 

i , and x represents the L-dimensional sparse texture 

vector described in Section III-A. Experiments demonstrate 

that the step of incorporating neighborhood interactions 

increases the overall pixel-wise labeling accuracy by 2.3%. 

We also find that the color potential using the 2/Lab  

descriptor outperforms the GMM color model as used in 

[10]. 

 

2) Edge Potential 

Inside a very small region, edge information basically 

indicates local image shape priors; the regions belonging to 

the same object often have strong edge continuities, which 

are described as the edge potential in this paper. As shown 

in Fig. 5, we find that there are many edges (blue lines) 

going through neighboring nodes. If two neighboring nodes 

are crossed by an edge, they very possibly belong to a visual 

unit and have the same figure/ground label. Motivated by 

this observation, we define the edge potential to capture the 

cue of edge continuity. 

Given an image, we compute its binary gradient 

magnitude . Let  be the node index matrix, which 

indicates that the graph node that a pixel belongs to. 

Assuming that ( , )
n n n
c x y  denotes the coordinate of 

pixel n and ( , )i j  represents a pair of neighboring nodes, 

we can denote their common boundaries as a pixel pair set, 

as follows: 

 

1 1{( , ) | | ,| | , ( ) , ( ) }
ij n m n m n m n m

c c x x y y c i c j .
 
(11)

  
 

Then, the edge potential is computed as follows: 

 

|| ||( )e
ij ij
g zI ,              (12) 

 

where || ||
( , )
max

iji j
z  and 

1 1{( , ) ( ) , ( ) ,( , ) }
ij n m n m n m ij

c c c c c c . 

 

C. Parameter Estimation 
 

The parameter vector v in Eq. (7) is automatically learned 

from the training data. Given a set of training images 

1( ) ( ){( , ), ,..., }n n n NT L I , we assume that all the training 

 
           (a)                     (b)                  (c) 

Fig. 5. Edge continuity. (a) Split patches. (b) Overlying image edge 

map on a split patch partition. (c) Local magnifying map. 
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data are independent and identically distributed. We then use 

the conditional maximum likelihood (CML) criterion to 

estimate v. Its log likelihood is computed as follows: 

 

1

1 i

N
n n

n

N
n n n n n n

i i i j ij
n i i j

L

P

A l l l g z
V V

v

L I v

I v I

( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( )

log ( | , )

( , ) ( ) log ,

 (13) 

 

where the last term is the log-partition function. In general, 

the evaluation of the partition function is a NP-hard problem. 

We could use either sampling techniques (e.g., the Markov 

chain Monte Carlo method [19]) or some approximations 

(e.g., those of the free energy [20], piecewise training [21], 

pseudo-likelihood [22]) to estimate the parameters.  

   The optimal parameter v  maximizes the log condi-

tional likelihood according to the CML estimation as 

follows: 

argmax ( )L=
v

v v .            (14) 

This can be solved by using the gradient descent method. 

The derivative of the log likelihood ( )L v  is written as 

follows:  

 

1 i i

N
n n n n
i j ij P i j ij

n i j i j

L

l l g E l l g

v

v

I I( ) ( ) ( ) ( )

( )

( ) ( ) ,

 (15) 

 

where the second term ()
P
E  denotes the expectation with 

respect to the distribution ( )( | , )nP l I v . That is, 

 

i

i

n
P i j ij

i j

n n
i j ij

l i j

E l l g

P l l l g

I

I v I

( )

( ) ( )

( )

( | , ) ( ) .

     (16) 

 

In general, the expectation cannot be computed analyt-

ically because of the combinatorial number of elements in 

the configuration space of labels. In this work, we use belief 

propagation [23] to approximate it. 

 

 

IV. EXPERIMENT AND DISCUSSION 
 
A. Image Datasets 

 

We evaluate the proposed approach using three datasets. 

The MSRC dataset [10] contains 591 images with 21 

categories. The performance of the unary classifier on this 

dataset is measured by using the pixel precision. Further-

more, for comparison with a previous work [24], we select 

the following 13 classes of 231 images with a 7-class 

foreground (cow, sheep, airplane, car, bird, cat, and dog) and 

a 6-class background (grass, tree, sky, water, road, and 

building) as the data subset. The ground truth labeling of the 

dataset contains pixels labeled as ‘void’ (i.e., color-coded as 

black), which implies that these pixels do not belong to any 

of the 21 classes. In our experiments, void pixels are 

ignored for both the training and the testing of the unary 

classifier. The dataset is randomly split into roughly 40% 

training and 60% test sets, while ensuring approximately 

proportional contributions from each class. 

The second dataset is the Weizmann horse dataset [25], 

which includes the side views of many horses that have 

different appearances and poses. We have also used the 

VOC2006 cow database [26] in which ground truth segmen-

tations are manually created. For the two datasets, the 

numbers of images in the training and test sets are exactly 

the same as in [27]. 

 

B. Common Parameters 
 

When extracting the pixel-level texture descriptor, we set 

the parameters of the Gabor filter as scales 1 1 2{ , . } and 

directions 0 / 4 / 2 / 4{ , , , }3 . The phase response is 

uniformly quantified into eight regions. Hence, the size of 

the pixel-level feature vector is 4 2 8 64 . We 

randomly select roughly 60000 samples from all the training 

images to learn the dictionary D and ensure approximately 

proportional contributions from each image. We set the 

dictionary size as 2048. Thus, a 64-dimensional pixel-level 

vector is sparsely encoded as a 2048-dimensional vector; 

then, by spatial pyramid matching and max pooling, we 

extract a patch feature from 16×16 pixel patches, which are 

densely sampled with a step size of 4 pixels.  

During the training of the unary classifier, a patch 

possibly contains multiple labels; however, we take the 

label that accounts for more than 75% of all the pixels in 

this patch as its label. We find that the number of patches 

of the training images in each class on average is in the 

order of 10000, and some classes have more than 100000 

patches. Considering the memory and computational 

constraints, we randomly select 8000 patches from each 

class to construct a patch dataset for the evaluation of the 

unary classification, and each class sample is randomly 

split into 25% training and 75% test sets. For efficiency, 

we reduce the dimension of a patch feature from 10432 to 

4000 by using the incremental principal component 

analysis (PCA) algorithm [28], in which we feed 20% 

samples to increment PCA in order to approximate the 

mean vector and the basis vectors. 
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C. Unary Accuracy 
 

To evaluate the performance of the proposed patch 

representation, we use a simple linear SVM classifier to 

conduct 21-class classification experiments on the MSRC 

dataset. We select 1200 patches per class as training samples 

and the rest of the patches as the testing samples. We 

achieve patch-wise labeling accuracy of 71.0%, while the 

state-of-the-art approach [10] gives pixel-wise accuracy of 

69.6%. For a fair comparison, we further refine the patch 

precision segmentations to the pixel precision ones by 

simply post-processing.  

In particular, we first get split patches (i.e., graph nodes) 

by using an existing segmentation method as described in 

Section III-A. The nodes are not always larger than the 

patches in size. Then, we take the nodes within the same 

segment as generated by [18] as the content consistent nodes. 

Finally, the label of each node is decided by a majority vote 

of the labels of its neighboring nodes, which must also be its 

content-consistent nodes. After the above processing, we 

achieve pixel-wise accuracy of 72.1%.  

We also evaluate the binary classification performance on 

the 13-class dataset. We select 2200 patches per class as the 

training samples and label the 7-class foreground and the 6-

class background as positive samples and negative samples, 

respectively. Thus, we achieve patch-wise labeling accuracy 

of 87.5%. After the post-processing, we achieve pixel-wise 

accuracy of 88.4%. The unary pixel-wise accuracy on the 

Weizmann dataset and the VOC2006 dataset is 89.9% and 

94.5%, respectively. 

 

D. Potentials Analysis 

 

On the 13-class dataset, we compare the unary potential 

accuracy with the full model accuracy. The latter is 

improved by 3.2% on average. This seemingly small 

numerical improvement corresponds to a large perceptual 

improvement (see Fig. 6), which shows that our pairwise 

potentials are effective. 

 

E. Comparison 
 

We evaluate the performance of the proposed method 

against that of three state-of-the-art methods [24, 27, 29]. 

The quantitative measure is the accuracy, namely segment-

ation cover, which is defined as the percentage of correctly 

classified pixels in the image (both foreground and back-

ground) [24, 29].  

On the MSRC dataset, since the performance varies 

substantially for different classes, we respectively give the 

accuracy of each class. We list the quantitative comparison 

of seven classes in Table 1, which shows that our method 

outperforms the two competitors except for the cat class. 

 
      (a)             (b)             (c)             (d) 

Fig. 6. Contribution of pairwise potentials. (a) Input images. (b) Results 

of the unary classification with patch-wise accuracy. (c) Post-processing 
results with pixel-wise accuracy. (d) Results of the full CRF model. The 
first two examples show an increase in accuracy of 0.1% and 3.1%, 
respectively, while the last example significantly improves the accuracy by 
39.0%.  
 

 

 

Fig. 7. Qualitative comparison with [24] for the MSRC database. The 

first and the third rows show the results reported in [24]. The second and 
the fourth rows show our results. 
 

 

In addition, the method proposed in [24] only selects 10 

images for each class such that there is a single object in 

each image, while we compute the segmentation accuracy 

on the 13-class sub-dataset of 231 images, and many images 

contain several object instances. The difference in testing 

data also indicates that our method is more robust than that 

proposed in [24]. Fig. 7 shows some visual examples of the 

same images as reported in [24]. Although the accuracies of 

some examples are lower than those in the case of the 

competitor methods, our overall accuracy is higher.  

On the Weizmann and VOC2006 datasets, we compute 

the 2-class confusion matrix, as shown in Table 2, which 

shows that the proposed method performs favorably against  
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Fig. 8. Examples of representative segmentation results on the 

Weizmann horse dataset. From top to down: input images, results 
reported in [27], and our results.  
 

 

 
Fig. 9. Examples of representative segmentation results on the 

VOC2006 cow images. From top to down: Input images, results reported 
in [27], and our results. 
 

 

the method proposed in [27] on the first dataset and much 

better on the second one. Figs. 8 and 9 show the same 

examples as those considered in [27]. The reason that the 

results on the cow dataset are very goodies that the 

appearances of the foreground and background are res-

pectively homogeneous and the spatial distribution of the 

foreground is very compact. Compared to the horse dataset, 

the foreground of many images are inhomogeneous; in 

particular, horse shanks are very slim and their colors are 

different from those of the body, which leads to horse 

shanks going missing from the final segmentation, as shown 

in Fig. 8. In addition, the similar appearance of the fore-

ground and the shadow in the background possibly causes 

some errors. 

 

 

V. CONCLUSIONS  
 

In this paper, we propose a new discriminative model for 

figure/ground segmentation. First, a pixel-level dictionary is 

learnt from mass pixel-wise Gabor descriptors; second, each 

pixel is mapped as a high-dimensional sparse vector, and 

then, all the sparse vectors in a patch are fused to represent 

the patch by max pooling and spatial matching. The 

proposed unary features can simultaneously capture the 

appearance and context information, which significantly 

enhances the unary classification accuracy. The upgrade 

color and texture potentials with neighborhood interactions 

and the proposed edge potential weaken the interference of 

abnormal nodes during graph affinity computation. The 

experimental results demonstrate that the proposed approach 

is powerful with a comparison with three state-of-the-art 

approaches. In the future, we hope to integrate explicit 

semantic context and salient information to make the 

algorithm more intelligent. 
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