• Title/Summary/Keyword: Billet Temperature

Search Result 115, Processing Time 0.019 seconds

An Experimental Study for Mechanical Properties of Al-Mg-Mn-Si Alloy by ECA pressing (ECA기법을 활용한 Al-Mg-Mn-Si 합금의 기계적 성질에 관한 연구)

  • Kook, Jong-Han
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.6
    • /
    • pp.785-792
    • /
    • 2011
  • Equal channel angular(ECA) pressing is the established processing technique in which a polycrystalline metal is pressed through the die to achieve a very high plastic strain. Therefore, the capability to produce an ultra-fine grain size in the materials is provided. To investigate that mechanical properties at elevated temperature have the ultrafine grain ECA pressing, experiments were conducted on an Al-4.8% Mg-0.07% Mn-O.06% Si alloy. After having been solution treated at 773K for 2hrs, the billet for ECA pressing was inserted into the die. And it was pressed through two channel of equal to cross section intersecting at a 90 degree angle. The billet can be extrude repeatedly because of 1:1 extrusion ratio. Since the billet is passed through the cannel for 2 times, a large strain is accumulated in the alloy. The tensile tests on elevated temperature were carried out with initial strain rate of $10^{-3}s^{-1}$ at eight temperature distributed from 293K to 673K.

Steady-state finite element analysis of three-dimensional extrusion of sections through square die (평금형을 통한 3차원 압출의 정상상태 유한요소해석)

  • 이승훈;이춘만
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1998.03a
    • /
    • pp.231-234
    • /
    • 1998
  • This study presents steady-state finite element analysis of three-dimensional hot extrusion of sections through square dies. The objective of this study is to develop a steady-state finite element method for hot extrusion through square dies, and to provide theoretical basis for the optimal die design and process control in the extrusion technology. In the present work, steady-state assumption is applied to both analyses of deformation and temperature. The analysis of temperature distribution includes heat transfer. Convection like element is adopted for the heat transfer analysis between billet and container, and also billet and die. Distributions of temperature, effective strain rate, velocity and mean stress are discussed to design extrusion die effectively.

  • PDF

Comparison of Square Section Drawings from Circular Billets through Cassette-Roller-Dies and Hole Die (카세트롤러와 홀다이를 이용한 원형소재에서 사각형 단면 인발 비교)

  • Choi J. I.;Han C. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.208-211
    • /
    • 2001
  • In the drawing from round billet to non-circular section there are two different processes through solid hole die(HD) and the other cassette roller dies(CRD). The CRD process has several cassette type rollers and a billet is able to move through the given gaps between two profiled rollers. The objective of this study is based on the analysis and evaluation of two aforementioned processes using experiments and finite element simulation. In order to simulate the multi-stage drawing process from circular sectioned billet to rounded square section, the finite element analysis is applied to the process using a commercially available DEFORM-3D code. Two types of experimental drawing tests through designed and manufactured dies for pure copper and aluminum alloy are carried out at room temperature. The analysis included comparison of material properties before and after drawing of each process and also provide some useful information by a FEM simulation.

  • PDF

A study on rib-web shaped ring forging using UBET (UBET를 이용한 리브-웨브형 링 단조에 관한 연구)

  • Kim, Y.H.;Bae, W.B.;Nam, K.H.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.5
    • /
    • pp.134-142
    • /
    • 1994
  • An upper bound elemental technique (UBET) is applied to predict variations of neutral plane and optimal position of the initial billet for rib-wep shaped ring forging. In the analysis, the neutral plane position and velocity fields are determined by minimizing the total power consump- tion with respect to chosen parameters. The degree of die-cavity filling by initial billet-position and the variations of neutral plane by friction condition are investigated. Experiments have been carried out with pure plasticine billets at room temperature. The theoretical predictions of the forging load and the flow pattern are in good agrement with the experimental results.

  • PDF

Fabrication of a Joint Node for an Aluminum Frame for a Low Speed Electric Vehicle using Thixoforming Technology (저속 전기자동차용 알루미늄 차체 조인트 노드의 반응고 성형)

  • Lee, S.Y.
    • Transactions of Materials Processing
    • /
    • v.23 no.4
    • /
    • pp.244-249
    • /
    • 2014
  • The thixoforming process has been applied to forming of a joint node for the aluminum frame of a low speed electric vehicle. A joint node should connect three aluminum extruded chassis showing different profiles. The MHS(magnetohydrodynamic stirring) A357 billet was selected because homogeneous globular grains are necessary as the billet materials for thixoforming. A careful design of joint node has been performed by the considerations of structural demands and the simulation results for the thixoforming process using the MAGMAsoft. Optimum heating temperature for the A357 billet was between 580 and $585^{\circ}C$ corresponding to the semi-solid temperatures showing 20-30% of liquid fraction. An injection speed of around 100mm/s and preheating of die at temperatures of $200^{\circ}C$ were also necessary conditions to obtain reasonable thixoformed parts.

Determination of Welding Pressure in the Porthole Die Extrusion of Improved Al7003 Hollow Section Tubes (포트홀 다이를 이용한 개량된 Al7003 중공압출재의 접합압력결정)

  • Jeong C. S.;Jo H. H.;Kim B. M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.10a
    • /
    • pp.74-77
    • /
    • 2000
  • Porthole die extrusion has a great advantage in the forming of hollow section tubes difficult to produce by conventional extrusion with a mandrel on the stem. Because of the complicated structure of die assembly, extrusion process as a forming of hollow section tubes has been investigated experimentally Therefore, analytic approaches that are useful in profitable die design and in the improvement of productivity are inevitably demanded Welding strength is affected by many parameters, which are such as extrusion ratio, extrusion speed, die shape, porthole number, bearing length, billet temperature and mandrel shape. In this paper, the parameters, which are such as billet temperature, bearing length and tube thickness, are examined. The welding pressures are examined through 3D simulation of non steady state and compared with experimental results.

  • PDF

The Study on the Microstructures in Direct Squeeze cast and Gravity Cast of 7XXX Al Wrought Alloy (중력주조 및 직접가압주조 7XXX계 Al합금의 미세조직에 관한 연구)

  • Kim, Sug-Won;Kim, Dae-Young;Woo, Ki-Do;Kim, Dong-Kun
    • Journal of Korea Foundry Society
    • /
    • v.19 no.1
    • /
    • pp.47-53
    • /
    • 1999
  • Squeeze casting process has been used in the field of a commercial manufacturing method, in which metal is enforcedly solidified under pressure enough to prevent the cast defects such as either gas porosity or shrinkage defect. In this paper, to clarify the relationship between applied pressures and macro ${\cdot}$ microstructural behaviors in gravity and direct squeeze casts, specimens were cast by various squeezing pressures during solidification of 7000 series Al wrought alloy in the metal die designed specially. The applied pressures used in this study were 0, 25, 50, and 75 MPa. The microstructural morphologies of squeeze cast were more fine and dense with increasing the applied pressures, because of the greater solidification rate of billet resulting from the applied pressure. A normal segregation phenomenon of an increasing in amount of eutectics towards the center of the billet was observed for squeeze casts, whereas gravity cast showed an inverse segregation phenomenon of an increasing in amount of eutectics towards the edge in the billet. This change in segregation pattern which is normal or inverse is due to a higher radial temperature gradient and reduced time in the semi solid state for squeeze casting.

  • PDF

Reheating Process of Metal Matrix Composite for Thixoforming (Thixoforming을 위한 금속복합재료의 재가열 공정)

  • 안성수;강충길;조형호
    • Composites Research
    • /
    • v.13 no.4
    • /
    • pp.19-32
    • /
    • 2000
  • The fabrication process of particulate metal matrix composites(PMMCs) with homogeneous distribution of reinforcement and reheating for thixoforming has been studied. Both of eletro-magnetic stirring and mechanical stirring were used to fabricate particulate metal matrix composites(PMMCs) for variation of particle size. The electrical and mechanical processing conditions for fabricating PMMCs are also suggested. For thixoforming of PMMCs, fabricated bi1lets are reheated by using the designed optimal coil with as function of length between PMMC billet and coil surface, and coil diameter and billet. The effect of reinforcement distribution according to variation of billet temperature were investigated with solid fraction theory with a function of matrix alloy and volume fraction of reinforcement.

  • PDF

Microstructural Evolution of Electromagnetically Stirred Al alloy Billet During Isothermal Reheating at the Solid-liquid State (전자기 교반한 알루미늄합금 빌렛의 재가열시 고액공존구역에서의 조직변화)

  • Lee, Dock-Young
    • Journal of Korea Foundry Society
    • /
    • v.28 no.3
    • /
    • pp.129-135
    • /
    • 2008
  • The reheating stage of electromagnetically stirred Al billet is a critical factor in the thixoforming process. When reheated to the solid-liquid state, the microstructure evolves to a more globular and more homogeneous structure by a coarsening mechanism, the kinetics depending on the initial microstructure. Microstructural evolution has been characterized by conventional parameters (mean size of particle and shape factor) as a function of holding time in the solid-liquid state. The aim of this study is to report experimental results concerning microstructural evolution in the solid-liquid state of electromagnetically stirred Al billet. The material was elaborated in the form of continuously cast bars solidified with electromagnetic stirring to degenerate the dendritic structure. The choice of the reheating conditions is determined by a dendritic ripening and coalescence mechanism, involving variations of both the shape and size of the particles. The reheating time has to be long enough to allow a minimum degree of spheroidizing, but has to be limited as much as possible in order to avoid excessive ripening. The optimum microstructure was obtained at the reheating temperature of near $584^{\circ}C$ and the holding time of 5 min. The only means of combining high productivity with good casting quality was to use feedstock billets whose microstructure showed rapid transformation characteristics.

Reheating Process of Metal Matrix Composites Fabricated by Combined Stirring Process for Thixoforming (복합교반법으로 제조한 금속복합재료의 Thixoforming용 재가열공정)

  • 이동건;강충길
    • Transactions of Materials Processing
    • /
    • v.11 no.1
    • /
    • pp.45-53
    • /
    • 2002
  • The forming process of metal matrix composites by die casting and squeeze casting process are limited in size and dimension In term of final parts. The melt strirring method have the problems that the homogeneous distribution of the reinforcements is difficult due to the low weldability and the density difference between the molten metal and the reinforcement. The thixoforming process for metal matrix composites has numerous advantages compacted to die casting, squeeze casting and compocasting. However, for the thixofoming process, the billet with the desired volume fraction must be heated to obtain a uniform temperature distribution over the entire cross-sectional areas. To obtain the reheating conditions of composites, the particulate reinforced metal matrix composites for thixoforming were fabricated by combined stirring process which is simultaneously performed with electro-magnetic stirring and mechanical stirring process. The matrix alloy and reinforcement are used to aluminum alloy(A357) and SiCp with diameter 14, $25{\mu}m$, respectively. The microstructure characteristics were investigated by changing the volume fraction and reinforcement size. The heating conditions to obtain the uniform temperature distribution in cross section area of fabricated metal matrix composites billet are proposed with heating time, the heating temperature and the holding time.