• Title/Summary/Keyword: Big-data investment

Search Result 149, Processing Time 0.027 seconds

The Relationship between Internet Search Volumes and Stock Price Changes: An Empirical Study on KOSDAQ Market (개별 기업에 대한 인터넷 검색량과 주가변동성의 관계: 국내 코스닥시장에서의 산업별 실증분석)

  • Jeon, Saemi;Chung, Yeojin;Lee, Dongyoup
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.2
    • /
    • pp.81-96
    • /
    • 2016
  • As the internet has become widespread and easy to access everywhere, it is common for people to search information via online search engines such as Google and Naver in everyday life. Recent studies have used online search volume of specific keyword as a measure of the internet users' attention in order to predict disease outbreaks such as flu and cancer, an unemployment rate, and an index of a nation's economic condition, and etc. For stock traders, web search is also one of major information resources to obtain data about individual stock items. Therefore, search volume of a stock item can reflect the amount of investors' attention on it. The investor attention has been regarded as a crucial factor influencing on stock price but it has been measured by indirect proxies such as market capitalization, trading volume, advertising expense, and etc. It has been theoretically and empirically proved that an increase of investors' attention on a stock item brings temporary increase of the stock price and the price recovers in the long run. Recent development of internet environment enables to measure the investor attention directly by the internet search volume of individual stock item, which has been used to show the attention-induced price pressure. Previous studies focus mainly on Dow Jones and NASDAQ market in the United States. In this paper, we investigate the relationship between the individual investors' attention measured by the internet search volumes and stock price changes of individual stock items in the KOSDAQ market in Korea, where the proportion of the trades by individual investors are about 90% of the total. In addition, we examine the difference between industries in the influence of investors' attention on stock return. The internet search volume of stocks were gathered from "Naver Trend" service weekly between January 2007 and June 2015. The regression model with the error term with AR(1) covariance structure is used to analyze the data since the weekly prices in a stock item are systematically correlated. The market capitalization, trading volume, the increment of trading volume, and the month in which each trade occurs are included in the model as control variables. The fitted model shows that an abnormal increase of search volume of a stock item has a positive influence on the stock return and the amount of the influence varies among the industry. The stock items in IT software, construction, and distribution industries have shown to be more influenced by the abnormally large internet search volume than the average across the industries. On the other hand, the stock items in IT hardware, manufacturing, entertainment, finance, and communication industries are less influenced by the abnormal search volume than the average. In order to verify price pressure caused by investors' attention in KOSDAQ, the stock return of the current week is modelled using the abnormal search volume observed one to four weeks ahead. On average, the abnormally large increment of the search volume increased the stock return of the current week and one week later, and it decreased the stock return in two and three weeks later. There is no significant relationship with the stock return after 4 weeks. This relationship differs among the industries. An abnormal search volume brings particularly severe price reversal on the stocks in the IT software industry, which are often to be targets of irrational investments by individual investors. An abnormal search volume caused less severe price reversal on the stocks in the manufacturing and IT hardware industries than on average across the industries. The price reversal was not observed in the communication, finance, entertainment, and transportation industries, which are known to be influenced largely by macro-economic factors such as oil price and currency exchange rate. The result of this study can be utilized to construct an intelligent trading system based on the big data gathered from web search engines, social network services, and internet communities. Particularly, the difference of price reversal effect between industries may provide useful information to make a portfolio and build an investment strategy.

Predicting the Direction of the Stock Index by Using a Domain-Specific Sentiment Dictionary (주가지수 방향성 예측을 위한 주제지향 감성사전 구축 방안)

  • Yu, Eunji;Kim, Yoosin;Kim, Namgyu;Jeong, Seung Ryul
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.1
    • /
    • pp.95-110
    • /
    • 2013
  • Recently, the amount of unstructured data being generated through a variety of social media has been increasing rapidly, resulting in the increasing need to collect, store, search for, analyze, and visualize this data. This kind of data cannot be handled appropriately by using the traditional methodologies usually used for analyzing structured data because of its vast volume and unstructured nature. In this situation, many attempts are being made to analyze unstructured data such as text files and log files through various commercial or noncommercial analytical tools. Among the various contemporary issues dealt with in the literature of unstructured text data analysis, the concepts and techniques of opinion mining have been attracting much attention from pioneer researchers and business practitioners. Opinion mining or sentiment analysis refers to a series of processes that analyze participants' opinions, sentiments, evaluations, attitudes, and emotions about selected products, services, organizations, social issues, and so on. In other words, many attempts based on various opinion mining techniques are being made to resolve complicated issues that could not have otherwise been solved by existing traditional approaches. One of the most representative attempts using the opinion mining technique may be the recent research that proposed an intelligent model for predicting the direction of the stock index. This model works mainly on the basis of opinions extracted from an overwhelming number of economic news repots. News content published on various media is obviously a traditional example of unstructured text data. Every day, a large volume of new content is created, digitalized, and subsequently distributed to us via online or offline channels. Many studies have revealed that we make better decisions on political, economic, and social issues by analyzing news and other related information. In this sense, we expect to predict the fluctuation of stock markets partly by analyzing the relationship between economic news reports and the pattern of stock prices. So far, in the literature on opinion mining, most studies including ours have utilized a sentiment dictionary to elicit sentiment polarity or sentiment value from a large number of documents. A sentiment dictionary consists of pairs of selected words and their sentiment values. Sentiment classifiers refer to the dictionary to formulate the sentiment polarity of words, sentences in a document, and the whole document. However, most traditional approaches have common limitations in that they do not consider the flexibility of sentiment polarity, that is, the sentiment polarity or sentiment value of a word is fixed and cannot be changed in a traditional sentiment dictionary. In the real world, however, the sentiment polarity of a word can vary depending on the time, situation, and purpose of the analysis. It can also be contradictory in nature. The flexibility of sentiment polarity motivated us to conduct this study. In this paper, we have stated that sentiment polarity should be assigned, not merely on the basis of the inherent meaning of a word but on the basis of its ad hoc meaning within a particular context. To implement our idea, we presented an intelligent investment decision-support model based on opinion mining that performs the scrapping and parsing of massive volumes of economic news on the web, tags sentiment words, classifies sentiment polarity of the news, and finally predicts the direction of the next day's stock index. In addition, we applied a domain-specific sentiment dictionary instead of a general purpose one to classify each piece of news as either positive or negative. For the purpose of performance evaluation, we performed intensive experiments and investigated the prediction accuracy of our model. For the experiments to predict the direction of the stock index, we gathered and analyzed 1,072 articles about stock markets published by "M" and "E" media between July 2011 and September 2011.

The Effect of Customer Satisfaction on Corporate Credit Ratings (고객만족이 기업의 신용평가에 미치는 영향)

  • Jeon, In-soo;Chun, Myung-hoon;Yu, Jung-su
    • Asia Marketing Journal
    • /
    • v.14 no.1
    • /
    • pp.1-24
    • /
    • 2012
  • Nowadays, customer satisfaction has been one of company's major objectives, and the index to measure and communicate customer satisfaction has been generally accepted among business practices. The major issues of CSI(customer satisfaction index) are three questions, as follows: (a)what level of customer satisfaction is tolerable, (b)whether customer satisfaction and company performance has positive causality, and (c)what to do to improve customer satisfaction. Among these, the second issue is recently attracting academic research in several perspectives. On this study, the second issue will be addressed. Many researchers including Anderson have regarded customer satisfaction as core competencies, such as brand equity, customer equity. They want to verify following causality "customer satisfaction → market performance(market share, sales growth rate) → financial performance(operating margin, profitability) → corporate value performance(stock price, credit ratings)" based on the process model of marketing performance. On the other hand, Insoo Jeon and Aeju Jeong(2009) verified sequential causality based on the process model by the domestic data. According to the rejection of several hypotheses, they suggested the balance model of marketing performance as an alternative. The objective of this study, based on the existing process model, is to examine the causal relationship between customer satisfaction and corporate value performance. Anderson and Mansi(2009) proved the relationship between ACSI(American Customer Satisfaction Index) and credit ratings using 2,574 samples from 1994 to 2004 on the assumption that credit rating could be an indicator of a corporate value performance. The similar study(Sangwoon Yoon, 2010) was processed in Korean data, but it didn't confirm the relationship between KCSI(Korean CSI) and credit ratings, unlike the results of Anderson and Mansi(2009). The summary of these studies is in the Table 1. Two studies analyzing the relationship between customer satisfaction and credit ratings weren't consistent results. So, in this study we are to test the conflicting results of the relationship between customer satisfaction and credit ratings based on the research model considering Korean credit ratings. To prove the hypothesis, we suggest the research model as follows. Two important features of this model are the inclusion of important variables in the existing Korean credit rating system and government support. To control their influences on credit ratings, we included three important variables of Korean credit rating system and government support, in case of financial institutions including banks. ROA, ER, TA, these three variables are chosen among various kinds of financial indicators since they are the most frequent variables in many previous studies. The results of the research model are relatively favorable : R2, F-value and p-value is .631, 233.15 and .000 respectively. Thus, the explanatory power of the research model as a whole is good and the model is statistically significant. The research model has good explanatory power, the regression coefficients of the KCSI is .096 as positive(+) and t-value and p-value is 2.220 and .0135 respectively. As a results, we can say the hypothesis is supported. Meanwhile, all other explanatory variables including ROA, ER, log(TA), GS_DV are identified as significant and each variables has a positive(+) relationship with CRS. In particular, the t-value of log(TA) is 23.557 and log(TA) as an explanatory variables of the corporate credit ratings shows very high level of statistical significance. Considering interrelationship between financial indicators such as ROA, ER which include total asset in their formula, we can expect multicollinearity problem. But indicators like VIF and tolerance limits that shows whether multicollinearity exists or not, say that there is no statistically significant multicollinearity in all the explanatory variables. KCSI, the main subject of this study, is a statistically significant level even though the standardized regression coefficients and t-value of KCSI is .055 and 2.220 respectively and a relatively low level among explanatory variables. Considering that we chose other explanatory variables based on the level of explanatory power out of many indicators in the previous studies, KCSI is validated as one of the most significant explanatory variables for credit rating score. And this result can provide new insights on the determinants of credit ratings. However, KCSI has relatively lower impact than main financial indicators like log(TA), ER. Therefore, KCSI is one of the determinants of credit ratings, but don't have an exceedingly significant influence. In addition, this study found that customer satisfaction had more meaningful impact on corporations of small asset size than those of big asset size, and on service companies than manufacturers. The findings of this study is consistent with Anderson and Mansi(2009), but different from Sangwoon Yoon(2010). Although research model of this study is a bit different from Anderson and Mansi(2009), we can conclude that customer satisfaction has a significant influence on company's credit ratings either Korea or the United State. In addition, this paper found that customer satisfaction had more meaningful impact on corporations of small asset size than those of big asset size and on service companies than manufacturers. Until now there are a few of researches about the relationship between customer satisfaction and various business performance, some of which were supported, some weren't. The contribution of this study is that credit rating is applied as a corporate value performance in addition to stock price. It is somewhat important, because credit ratings determine the cost of debt. But so far it doesn't get attention of marketing researches. Based on this study, we can say that customer satisfaction is partially related to all indicators of corporate business performances. Practical meanings for customer satisfaction department are that it needs to actively invest in the customer satisfaction, because active investment also contributes to higher credit ratings and other business performances. A suggestion for credit evaluators is that they need to design new credit rating model which reflect qualitative customer satisfaction as well as existing variables like ROA, ER, TA.

  • PDF

Verifying the Classification Accuracy for Korea's Standardized Classification System of Research F&E by using LDA(Linear Discriminant Analysis) (선형판별분석(LDA)기법을 적용한 국가연구시설장비 표준분류체계의 분류 정확도 검증)

  • Joung, Seokin;Sawng, Yeongwha;Jeong, Euhduck
    • Management & Information Systems Review
    • /
    • v.39 no.1
    • /
    • pp.35-57
    • /
    • 2020
  • Recently, research F&E(Facilities and Equipment) have become very important as tools and means to lead the development of science and technology. The government has been continuously expanding investment budgets for R&D and research F&E, and the need for efficient operation and systematic management of research F&E built up nationwide has increased. In December 2010, The government developed and completed a standardized classification system for national research F&E. However, accuracy and trust of information classification are suspected because information is collected by a method in which a user(researcher) directly selects and registers a classification code in NTIS. Therefore, in the study, we analyzed linearly using linear discriminant analysis(LDA) and analysis of variance(ANOVA), to measure the classification accuracy for the standardized classification system(8 major-classes, 54 sub-classes, 410 small-classes) of the national research facilities and equipment established in 2010, and revised in 2015. For the analysis, we collected and used the information data(50,271 cases) cumulatively registered in NTIS(National Science and Technology Service) for the past 10 years. This is the first case of scientifically verifying the standardized classification system of the national research facilities and equipment, which is based on information of similar classification systems and a few expert reviews in the in-outside of the country. As a result of this study, the discriminant accuracy of major-classes organized hierarchically by sub-classes and small-classes was 92.2 %, which was very high. However, in post hoc verification through analysis of variance, the discrimination power of two classes out of eight major-classes was rather low. It is expected that the standardized classification system of the national research facilities and equipment will be improved through this study.

Analysis of the Weight of SWOT Factors of Korean Venture Companies Based on the Industry 4.0 (4차 산업혁명 기반 한국 벤처기업의 SWOT요인에 대한 중요도 분석)

  • Lee, Dongik;Lee, Sangsuk
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.16 no.4
    • /
    • pp.115-133
    • /
    • 2021
  • This study examines the concept and related technologies of the 4th industrial revolution that has been mixed so far and examines the socio-economic changes and influences resulting from it, and the cases of responding to the 4th industrial revolution in major countries. Based on this, by deriving SWOT factors and calculating the importance of each factor for Korean venture companies to prepare for the forth industrial revolution, it was intended to help the government and policymakers in suggesting directions for establishing related policies. Furthermore, the purpose of this study was to suggest a direction for securing global competitiveness to Korean venture entrepreneurs and to help with basic and systematic analysis for further academic in-depth research. For this study, a total of 21 items derived through extensive literature research and data research to understand what are the necessary competency factors for internal and external environmental changes in order for Korean venture companies to have global competitiveness in the era of the 4th Industrial Revolution. After reviewing SWOT factors by three expert groups and confirming them through Delphi survey, the importance of each item was analyzed by using AHP, a systematic decision-making technique. As a result of the analysis, it was shown that Strength(48%), Opportunity(25%), Threat(16%), Weakness(11%) were considered important in order. In terms of sub-items, 'quick and flexible commercialization capability', 'platform/big data/non-face-to-face service activation', and 'ICT infrastructure and it's utilization' were shown to be of the comparatively high importance. On the other hand, in the lower three items, 'macro-economic stability and social infrastructure', 'difficulty in entering overseas markets due to global protectionism', and 'absolutely inferior in foreign investment' were found to have low priority. As a result of the correlation verification by item to see differences in opinions by industry, academia, and policy expert groups, there was no significant difference of opinion, as industry and academic experts showed a high correlation and industry experts and policy experts showed a moderate correlation. The correlation between the academic and policy experts was not statistically significant (p<0.01), so it was analyzed that there was a difference of opinion on importance. This was due to the fact that policy experts highly valued 'quick and flexible commercialization', which are strengths, and 'excellent educational system and high-quality manpower' and 'creation of new markets' which are opportunity items, while academic experts placed great importance on 'support part of government policy', which are strengths. The implication of this study is that in order for Korean venture companies to secure competitiveness in the field of the 4th industrial revolution, it is necessary to have a policy that preferentially supports the relevant items of strengths and opportunity factors. The difference in the details of strength factors and opportunity factors, which shows a high level of variability, suggests that it is necessary to actively review it and reflect it in the policy.

An Analysis of Economic and Psychological Factors on the Forest Protection of the Mountain People in Jeonbuk Province -On the Economic Psychological Status Associated with Structure in Forest Production- (산촌주민(山村住民) 산림보호(山林保護)에 대한 경제적(經濟的) 심리적요인(心理的要因) 분석(分析) -산림생산구조(山林生産構造)에 따르는 경제심리상(經濟心理狀)-)

  • Lee, Kwang Won;Kim, Jae Seng
    • Journal of Korean Society of Forest Science
    • /
    • v.36 no.1
    • /
    • pp.38-46
    • /
    • 1977
  • The purpose of this study are to analyze economic and psychological factors associated with the forest protection of the mountain people, and to explain the forms of the forest management by ownership classes, especially with forest in the production structure of the mountain villages, particulary from Aprial 1st to 20th in 1975. And the basis of the data for this study is to have been obtained by the sample of 462 households, in Jeonbuk province, which were selected by the method of Yandom sampling. In order to determine what relations there are between the forest ownership classes are independent and each of the selected economic and psychological factors, the chi-squre test was used. The findings may be summarized as follows; 1. The area per household forest land of the mountain villages farm families with forest was 1.4ha and are middle classes with the cultivated area, and manage their forest in favor of the forest fuel and the byproducts, which we call "Earn Ownership Management Form". As it is acomplished by the agricultural surplus labor, we can't expect the positive forest investments. 2. The expectation of the proceeds of forest investments seems to be high but 30% of them doubtful. And the mountain villages farm families with above 3ha forest area expect their forest investments to be positive and in future they have hope in the economic management from. 3. The mountainous mountain fram families reply to a small sums of capital and the control of after the fact on account of the negative factors of forest investment. But rural mountain villages farm famillies assist on spending too much money for the control and nexious insects damage. 4. The reason about illegal cut away was mainly their fuels problem and then most of moumtain farm villages was used to forest fuel in their fuel. But 57% of mountainous mountain villages farm families not having forest area, and 66% of them get their fual on the self-supply, and 66.9% of them get from public and nationat forest and other's forest. That is one of the big problems of the forest protection. 5. Above 66% of mountain people think that forest law is severe and 50% of mountainous mountain villages farm families think if usual. Especially ones not having forest area but taking advantage of forest among them think so. 6. Rural mountain villages farm families have comparatively positive attitude for protecting forest, but mountainous mountain villages farm families negative. Classes with above 3ha forest area have more outlook of forest protection. And the more such classes are, the better they can protect forest. 7. There are problem about operation and education of the forest law on the mountainous mountain villages farm families.

  • PDF

A Study on Intuitive IoT Interface System using 3D Depth Camera (3D 깊이 카메라를 활용한 직관적인 사물인터넷 인터페이스 시스템에 관한 연구)

  • Park, Jongsub;Hong, June Seok;Kim, Wooju
    • The Journal of Society for e-Business Studies
    • /
    • v.22 no.2
    • /
    • pp.137-152
    • /
    • 2017
  • The decline in the price of IT devices and the development of the Internet have created a new field called Internet of Things (IoT). IoT, which creates new services by connecting all the objects that are in everyday life to the Internet, is pioneering new forms of business that have not been seen before in combination with Big Data. The prospect of IoT can be said to be unlimited in its utilization. In addition, studies of standardization organizations for smooth connection of these IoT devices are also active. However, there is a part of this study that we overlook. In order to control IoT equipment or acquire information, it is necessary to separately develop interworking issues (IP address, Wi-Fi, Bluetooth, NFC, etc.) and related application software or apps. In order to solve these problems, existing research methods have been conducted on augmented reality using GPS or markers. However, there is a disadvantage in that a separate marker is required and the marker is recognized only in the vicinity. In addition, in the case of a study using a GPS address using a 2D-based camera, it was difficult to implement an active interface because the distance to the target device could not be recognized. In this study, we use 3D Depth recognition camera to be installed on smartphone and calculate the space coordinates automatically by linking the distance measurement and the sensor information of the mobile phone without a separate marker. Coordination inquiry finds equipment of IoT and enables information acquisition and control of corresponding IoT equipment. Therefore, from the user's point of view, it is possible to reduce the burden on the problem of interworking of the IoT equipment and the installation of the app. Furthermore, if this technology is used in the field of public services and smart glasses, it will reduce duplication of investment in software development and increase in public services.

The Present Situation and Challenges of the Russian Music Industry: Centered on the Digital Sound Sources (러시아 음악 산업 현황과 과제 - 디지털 음원을 중심으로 -)

  • Kwon, ki-bae;Kim, Se-il
    • Cross-Cultural Studies
    • /
    • v.50
    • /
    • pp.395-424
    • /
    • 2018
  • The purpose of this paper is to examine the current situation and background of the Russian consumer music market, where digital music sources are making great strides in the noted recent years. In addition, music storage technology, media and change are considered together in this report. Moreover, Russia is the 12th largest music market in the world. The Russian music industry is following the recent trend of the global music industry, where the digital music market is growing rapidly on many different levels. The explosive growth of the digital sound sources in Russia's music industry is attributed to the explosive increase in available consumer downloads, streaming sound source service, and the increase in the number of digital sound sources using mobile technologies due to the development of the Internet. In particular, the sales of the available and accessible streaming sound sources are expected to grow explosively by the year 2020, which is expected to account for more than 85% of total digital music sales. In other words, the spread of smartphones and the resulting changes in the lifestyle of the Russians have created these changes for the global consumer of music. In other words, the time has come for anyone to easily access music and listen to music without a separate audio or digital player. And the fact that the Russian government's strong policy on the eradication of illegal copying of music is becoming an effective deterrent, as is also the factor that led to the increase of the share of the digital sound source to increase sales in Russia. Today, the Russian music industry is leading this change through the age and process of simply adapting to the digital age. Music is the most important element of cultural assets, and it is the beneficial content, which drives the overall growth of the digital economy. In addition, if the following five improvements(First, strengthen the consciousness of the Russian people about copyright protection; Second, utilizing the Big Data Internet resources in the digital music industry; Third, to improve the monopoly situation of digital music distributors; Fourth, distribution of fair music revenues; and Fifth, revitalization of a re-investment in the current Russian music industry) are effective and productive, Russia's role and position in the world music market is likely to expand.

Factors Affecting International Transfer Pricing of Multinational Enterprises in Korea (외국인투자기업의 국제이전가격 결정에 영향을 미치는 환경 및 기업요인)

  • Jun, Tae-Young;Byun, Yong-Hwan
    • Korean small business review
    • /
    • v.31 no.2
    • /
    • pp.85-102
    • /
    • 2009
  • With the continued globalization of world markets, transfer pricing has become one of the dominant sources of controversy in international taxation. Transfer pricing is the process by which a multinational corporation calculates a price for goods and services that are transferred to affiliated entities. Consider a Korean electronic enterprise that buys supplies from its own subsidiary located in China. How much the Korean parent company pays its subsidiary will determine how much profit the Chinese unit reports in local taxes. If the parent company pays above normal market prices, it may appear to have a poor profit, even if the group as a whole shows a respectable profit margin. In this way, transfer prices impact the taxable income reported in each country in which the multinational enterprise operates. It's importance lies in that around 60% of international trade involves transactions between two related parts of multinationals, according to the OECD. Multinational enterprises (hereafter MEs) exert much effort into utilizing organizational advantages to make global investments. MEs wish to minimize their tax burden. So MEs spend a fortune on economists and accountants to justify transfer prices that suit their tax needs. On the contrary, local governments are not prepared to cope with MEs' powerful financial instruments. Tax authorities in each country wish to ensure that the tax base of any ME is divided fairly. Thus, both tax authorities and MEs have a vested interest in the way in which a transfer price is determined, and this is why MEs' international transfer prices are at the center of disputes concerned with taxation. Transfer pricing issues and practices are sometimes difficult to control for regulators because the tax administration does not have enough staffs with the knowledge and resources necessary to understand them. The authors examine transfer pricing practices to provide relevant resources useful in designing tax incentives and regulation schemes for policy makers. This study focuses on identifying the relevant business and environmental factors that could influence the international transfer pricing of MEs. In this perspective, we empirically investigate how the management perception of related variables influences their choice of international transfer pricing methods. We believe that this research is particularly useful in the design of tax policy. Because it can concentrate on a few selected factors in consideration of the limited budget of the tax administration with assistance of this research. Data is composed of questionnaire responses from foreign firms in Korea with investment balances exceeding one million dollars in the end of 2004. We mailed questionnaires to 861 managers in charge of the accounting departments of each company, resulting in 121 valid responses. Seventy six percent of the sample firms are classified as small and medium sized enterprises with assets below 100 billion Korean won. Reviewing transfer pricing methods, cost-based transfer pricing is most popular showing that 60 firms have adopted it. The market-based method is used by 31 firms, and 13 firms have reported the resale-pricing method. Regarding the nationalities of foreign investors, the Japanese and the Americans constitute most of the sample. Logistic regressions have been performed for statistical analysis. The dependent variable is binary in that whether the method of international transfer pricing is a market-based method or a cost-based method. This type of binary classification is founded on the belief that the market-based method is evaluated as the relatively objective way of pricing compared with the cost-based methods. Cost-based pricing is assumed to give mangers flexibility in transfer pricing decisions. Therefore, local regulatory agencies are thought to prefer market-based pricing over cost-based pricing. Independent variables are composed of eight factors such as corporate tax rate, tariffs, relations with local tax authorities, tax audit, equity ratios of local investors, volume of internal trade, sales volume, and product life cycle. The first four variables are included in the model because taxation lies in the center of transfer pricing disputes. So identifying the impact of these variables in Korean business environments is much needed. Equity ratio is included to represent the interest of local partners. Volume of internal trade was sometimes employed in previous research to check the pricing behavior of managers, so we have followed these footsteps in this paper. Product life cycle is used as a surrogate of competition in local markets. Control variables are firm size and nationality of foreign investors. Firm size is controlled using dummy variables in that whether or not the specific firm is small and medium sized. This is because some researchers report that big firms show different behaviors compared with small and medium sized firms in transfer pricing. The other control variable is also expressed in dummy variable showing if the entrepreneur is the American or not. That's because some prior studies conclude that the American management style is different in that they limit branch manger's freedom of decision. Reviewing the statistical results, we have found that managers prefer the cost-based method over the market-based method as the importance of corporate taxes and tariffs increase. This result means that managers need flexibility to lessen the tax burden when they feel taxes are important. They also prefer the cost-based method as the product life cycle matures, which means that they support subsidiaries in local market competition using cost-based transfer pricing. On the contrary, as the relationship with local tax authorities becomes more important, managers prefer the market-based method. That is because market-based pricing is a better way to maintain good relations with the tax officials. Other variables like tax audit, volume of internal transactions, sales volume, and local equity ratio have shown only insignificant influence. Additionally, we have replaced two tax variables(corporate taxes and tariffs) with the data showing top marginal tax rate and mean tariff rates of each country, and have performed another regression to find if we could get different results compared with the former one. As a consequence, we have found something different on the part of mean tariffs, that shows only an insignificant influence on the dependent variable. We guess that each company in the sample pays tariffs with a specific rate applied only for one's own company, which could be located far from mean tariff rates. Therefore we have concluded we need a more detailed data that shows the tariffs of each company if we want to check the role of this variable. Considering that the present paper has heavily relied on questionnaires, an effort to build a reliable data base is needed for enhancing the research reliability.