• 제목/요약/키워드: Big-data Software

검색결과 447건 처리시간 0.027초

지속가능한 농업 환경을 위한 블록체인과 AI 기반 빅 데이터 처리 기법 (Blockchain and AI-based big data processing techniques for sustainable agricultural environments)

  • 정윤수
    • 산업과 과학
    • /
    • 제3권2호
    • /
    • pp.17-22
    • /
    • 2024
  • 최근 ICT분야가 다양한 환경에서 사용되면서 지속가능한 농업 환경에서는 ICT 기술들을 활용하여 농작물별 병충해 분석, 농작물 수확시 로봇 사용, 빅 데이터로 인한 예측 등이 가능해졌다. 그러나, 지속 가능한 농업 환경에서는 자원의 고갈, 농업 인구 감소, 빈곤 증가, 환경 파괴 등을 해결하기 위한 노력이 꾸준히 요구되고 있다. 본 연구에서는 지속 가능한 농업 환경 기반의 농작물의 생산 비용 감소 및 효율성을 증가하기 위한 인공지능 기반 빅 데이터 처리 기법을 제안한다. 제안 기법은 AI를 결합한 농작물의 빅 데이터를 처리함으로써 데이터의 보안성과 신뢰성을 강화하고, 더 나은 의사 결정과 비즈니스 가치 추출이 가능하다. 이는 다양한 산업과 분야에서 혁신적인 변화를 이끌어내고, 데이터 중심의 비즈니스 모델의 발전을 촉진할 수 있다. 실험과정에서 제안 기법은 다량의 데이터가 생성되나, 일일이 정답을 태깅하기 힘든 농장 현장에서, 소량의 데이터에 대해서만 정확한 정답을 부여하고, 정답이 부여되지 않은 다량의 데이터와 함께 학습하여, 다량의 정답 데이터로 학습했을 때와 유사한 성능(오차율:0.05 이내)이 나타났다.

Sequential Pattern Mining for Intrusion Detection System with Feature Selection on Big Data

  • Fidalcastro, A;Baburaj, E
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권10호
    • /
    • pp.5023-5038
    • /
    • 2017
  • Big data is an emerging technology which deals with wide range of data sets with sizes beyond the ability to work with software tools which is commonly used for processing of data. When we consider a huge network, we have to process a large amount of network information generated, which consists of both normal and abnormal activity logs in large volume of multi-dimensional data. Intrusion Detection System (IDS) is required to monitor the network and to detect the malicious nodes and activities in the network. Massive amount of data makes it difficult to detect threats and attacks. Sequential Pattern mining may be used to identify the patterns of malicious activities which have been an emerging popular trend due to the consideration of quantities, profits and time orders of item. Here we propose a sequential pattern mining algorithm with fuzzy logic feature selection and fuzzy weighted support for huge volumes of network logs to be implemented in Apache Hadoop YARN, which solves the problem of speed and time constraints. Fuzzy logic feature selection selects important features from the feature set. Fuzzy weighted supports provide weights to the inputs and avoid multiple scans. In our simulation we use the attack log from NS-2 MANET environment and compare the proposed algorithm with the state-of-the-art sequential Pattern Mining algorithm, SPADE and Support Vector Machine with Hadoop environment.

경영분석 업무에 종사하는 비 기술기반 전공자를 위한 빅데이터 분석 및 시각화 기법 교육과정 제안 (Proposal of Big Data Analysis and Visualization Technique Curriculum for Non-Technical Majors in Business Management Analysis)

  • 홍필태;우종필
    • 실천공학교육논문지
    • /
    • 제12권1호
    • /
    • pp.31-39
    • /
    • 2020
  • 빅데이터 분석은 경영 및 산업현장에서 다양하게 분석되고 사용되고 있으며, 경영의사결정에서 중요한 역할을 한다. 경영분석 업무에 종사하는 빅데이터 분석 직무자의 직무능력은 반드시 미시적인 IT 기술 습득이 요구되는 것이 아니라, Data Scientist로서 다양한 경험과 인문학적 지식과 분석력이 요구되어진다. 그러나, 국가직무능력표준(NCS: National Competency Standards)을 기반으로 하는 국공립 교육기관 및 직무교육기관의 빅데이터 교육은 소프트웨어 공학적 측면에서 진행되고 있으며, 이러한 교육 방법론은 비 기술기반 전공자에게는 어렵고, 비효율적인 결과를 초래하기도 한다. 따라서, 우리는 현재의 빅데이터 플렛폼과 그와 관련된 기술을 분석하여, 그 중에서 현장 직무자에게 반드시 필요한 직무능력 요구수준이 무엇인지를 정의하였다. 그리고, 이를 바탕으로 비 기술기반 전공자를 위한 빅데이터 분석 및 시각화 기법 교육과정을 구성하였다. 특화된 본 교육과정을 경영현장에서 경영분석에 종사하는 금융기관 실무자를 중심으로 Pilot test를 실시한 결과 좀 더 개선된 교육효과를 얻을 수 있었다. 이에 본 연구에서 제시되는 교육방법은 산업전반에서 효율적으로 빅데이터 직무 수행과, 비 기술기반 전공 직무자를 대상으로 빅데이터 분석 및 시각화 교육이 활성화되는 계기가 될 것이다.

Deep Learning-based Evolutionary Recommendation Model for Heterogeneous Big Data Integration

  • Yoo, Hyun;Chung, Kyungyong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권9호
    • /
    • pp.3730-3744
    • /
    • 2020
  • This study proposes a deep learning-based evolutionary recommendation model for heterogeneous big data integration, for which collaborative filtering and a neural-network algorithm are employed. The proposed model is used to apply an individual's importance or sensory level to formulate a recommendation using the decision-making feedback. The evolutionary recommendation model is based on the Deep Neural Network (DNN), which is useful for analyzing and evaluating the feedback data among various neural-network algorithms, and the DNN is combined with collaborative filtering. The designed model is used to extract health information from data collected by the Korea National Health and Nutrition Examination Survey, and the collaborative filtering-based recommendation model was compared with the deep learning-based evolutionary recommendation model to evaluate its performance. The RMSE is used to evaluate the performance of the proposed model. According to the comparative analysis, the accuracy of the deep learning-based evolutionary recommendation model is superior to that of the collaborative filtering-based recommendation model.

빅데이터를 활용한 시장분석 및 사업화방법론 분석시스템 (Marketability analysis and commercialization methodology analysis system using big dataof Digital Policy & Management)

  • 김용호;박형범
    • 디지털융복합연구
    • /
    • 제21권2호
    • /
    • pp.27-32
    • /
    • 2023
  • 본 연구는 빅데이터를 활용한 시장성 분석 및 사업화방법론 분석 시스템에 관한 것으로서, 분석대상 제품에 대해 바이럴 마케팅이 가능한 컨텐츠 채널을 토대로 해당 제품의 시장성을 분석할 수 있는 빅데이터를 활용한 시장성 분석 및 사업화방법론 분석 시스템에 관한 것이다. 본 연구에 따른 빅데이터를 활용한 시장성 분석 및 사업화방법론 분석 시스템은 컨텐츠 채널에서 제공되는 마케팅 컨텐츠를 분석하여 분석대상 제품에 대한 시장성을 분석하므로 분석대상 제품에 대한 보다 정확한 바이럴 마케팅 효과를 판별할 수 있다는 장점이 있다고 하겠다.

Analyzing Box-Office Hit Factors Using Big Data: Focusing on Korean Films for the Last 5 Years

  • Hwang, Youngmee;Kim, Kwangsun;Kwon, Ohyoung;Moon, Ilyoung;Shin, Gangho;Ham, Jongho;Park, Jintae
    • Journal of information and communication convergence engineering
    • /
    • 제15권4호
    • /
    • pp.217-226
    • /
    • 2017
  • Korea has the tenth largest film industry in the world; however, detailed analyses using the factors contributing to successful film commercialization have not been approached. Using big data, this paper analyzed both internal and external factors (including genre, release date, rating, and number of screenings) that contributed to the commercial success of Korea's top 10 ranking films in 2011-2015. The authors developed a WebCrawler to collect text data about each movie, implemented a Hadoop system for data storage, and classified the data using Map Reduce method. The results showed that the characteristic of "release date," followed closely by "rating" and "genre" were the most influential factors of success in the Korean film industry. The analysis in this study is considered groundwork for the development of software that can predict box-office performance.

실험실정보관리시스템의 확장을 위한 오픈 소스 기반의 빅데이터 처리 기술에 관한 연구 (A Study on Big Data Processing Technology Based on Open Source for Expansion of LIMS)

  • 김순곤
    • 한국정보전자통신기술학회논문지
    • /
    • 제14권2호
    • /
    • pp.161-167
    • /
    • 2021
  • 실험실정보관리시스템(LIMS, Laboratory Information Management System)은 실험실 데이터를 저장, 가공, 검색 그리고 분석하기 위한 중앙화된 데이터베이스로서 검사, 분석, 시험 업무를 수행하는 실험실을 위해 특별히 고안된 컴퓨터 시스템 또는 시스템을 의미한다. 특히 LIMS는 실험실의 운영을 지원하는 기능을 갖추고 있으며, 워크플로우 관리나 데이터 추적지원 등이 필요하다. 본 논문에서는 실험실의 운영을 위하여 빅데이터 자동화 수집 기술의 하나인 크롤링 기술을 활용하여 웹사이트 및 다양한 채널에 존재하는 데이터를 수집한다. 수집된 시험 방법 및 내용 중 시험자가 활용할 수 있는 유용한 시험 방법 및 내용을 추천한다. 그리고 이에 대한 피드백을 관리하여 수집 채널의 검증이 가능한 상호보완적인 LIMS 플랫폼을 구현한다.

빅데이터 기반 공동선 증진을 위한 미래교육 방향성 탐색 연구 (A Study on Exploring Direction for Future Education for the Common Good Based on Big Data)

  • 김병만;김정인;이영우;이강훈
    • 융합정보논문지
    • /
    • 제12권2호
    • /
    • pp.37-46
    • /
    • 2022
  • 본 연구는 빅데이터와 키워드 네트워크 분석을 통해 공동선 증진을 위한 미래교육 방향을 탐색함으로써 미래교육의 방향성 제안에 대한 기초자료를 제공하는 것을 목적으로 한다. Textom에서 제공하는 빅데이터를 기반으로 '미래교육 + 공통선'이라는 키워드로 데이터를 수집한 후 키워드 네트워크 분석을 수행했다. 연구결과 '공익', '사회', 'KAIST 미래경고', '대책', '연구', '미래교육', '정치' 등이 공동선을 위한 미래교육의 사회적 인식에서 공통 키워드인 것으로 나타났다. 이번 연구결과는 공동선 증진을 위한 미래교육에 대한 사회적 인식이 인간, 물리적 환경, 사회적 대응, 학문적 관심, 교육정책, 교육계획 및 관련 변수와 밀접한 관련이 있음을 시사한다. 이와 같은 결과를 바탕으로 공동선 증진을 위한 미래교육의 방향성 제안을 위한 기초자료 마련에 의미 있는 시사점을 제시하였다.

중소기업을 위한 하둡 클러스터의 프로토타입과 분석 소프트웨어의 통합된 검증 (Integrated Verification of Hadoop Cluster Prototypes and Analysis Software for SMB)

  • 차병래;김남호;이성호;지유강;김종원
    • 한국항행학회논문지
    • /
    • 제18권2호
    • /
    • pp.191-199
    • /
    • 2014
  • 최근 IT 분야의 화두인 클라우드 컴퓨팅과 빅데이터 패러다임을 중소기업(Small and Medium Business: SMB) 차원에서 용이하게 활용하도록 지원하는 시도가 증가하고 있다. 이러한 노력의 일환으로, 본 논문에서는 프라이빗 클라우드 인프라 환경을 대상으로 하둡(Hadoop) 클러스터를 시험적으로 구축하는 프로토타입을 설계하고 구현한다. 프로토타입 구현은 싱글보드, PC, 그리고 서버를 이용하여 각각 수행하고, 그 성능을 테스트한다. 또한, ASA (American Standard Association) Dataset을 이용한 빅데이터 분석을 통해서 구축된 하둡 프로토타입을 활용하는 분석 소프트웨어 시스템의 성능을 통합적으로 검증한 결과를 제시한다. 이를 위해, R, 파이썬, D3, 자바와 같은 오픈소스를 이용하여 분석 소프트웨어 시스템을 구현하고, 테스트를 수행한다.

표절 탐지를 위한 비트 시그니처 기법 (Big Signature Method for Plagiarism Detection)

  • 김우생;강규철
    • Journal of Information Technology Applications and Management
    • /
    • 제24권1호
    • /
    • pp.1-10
    • /
    • 2017
  • Recently, the problem of plagiarism has emerged as a big social issue because not only literature but also thesis become the target of plagiarism. Even the government requires conformation for plagiarism of high-ranking official's thesis as a standard of their ethical morality. Plagiarism is not just direct copy but also paraphrasing, rewording, adapting parts, missing references or wrong citations. This makes the problem more difficult to handle adequately. We propose a plagiarism detection scheme called a bit signature in which each unique word of document is represented by 0 or 1. The bit signature scheme can find the similar documents by comparing their absolute and relative bit signatures. Experiments show that a bit signature scheme produces better performance for document copy detection than existing similar schemes.