최근 ICT분야가 다양한 환경에서 사용되면서 지속가능한 농업 환경에서는 ICT 기술들을 활용하여 농작물별 병충해 분석, 농작물 수확시 로봇 사용, 빅 데이터로 인한 예측 등이 가능해졌다. 그러나, 지속 가능한 농업 환경에서는 자원의 고갈, 농업 인구 감소, 빈곤 증가, 환경 파괴 등을 해결하기 위한 노력이 꾸준히 요구되고 있다. 본 연구에서는 지속 가능한 농업 환경 기반의 농작물의 생산 비용 감소 및 효율성을 증가하기 위한 인공지능 기반 빅 데이터 처리 기법을 제안한다. 제안 기법은 AI를 결합한 농작물의 빅 데이터를 처리함으로써 데이터의 보안성과 신뢰성을 강화하고, 더 나은 의사 결정과 비즈니스 가치 추출이 가능하다. 이는 다양한 산업과 분야에서 혁신적인 변화를 이끌어내고, 데이터 중심의 비즈니스 모델의 발전을 촉진할 수 있다. 실험과정에서 제안 기법은 다량의 데이터가 생성되나, 일일이 정답을 태깅하기 힘든 농장 현장에서, 소량의 데이터에 대해서만 정확한 정답을 부여하고, 정답이 부여되지 않은 다량의 데이터와 함께 학습하여, 다량의 정답 데이터로 학습했을 때와 유사한 성능(오차율:0.05 이내)이 나타났다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제11권10호
/
pp.5023-5038
/
2017
Big data is an emerging technology which deals with wide range of data sets with sizes beyond the ability to work with software tools which is commonly used for processing of data. When we consider a huge network, we have to process a large amount of network information generated, which consists of both normal and abnormal activity logs in large volume of multi-dimensional data. Intrusion Detection System (IDS) is required to monitor the network and to detect the malicious nodes and activities in the network. Massive amount of data makes it difficult to detect threats and attacks. Sequential Pattern mining may be used to identify the patterns of malicious activities which have been an emerging popular trend due to the consideration of quantities, profits and time orders of item. Here we propose a sequential pattern mining algorithm with fuzzy logic feature selection and fuzzy weighted support for huge volumes of network logs to be implemented in Apache Hadoop YARN, which solves the problem of speed and time constraints. Fuzzy logic feature selection selects important features from the feature set. Fuzzy weighted supports provide weights to the inputs and avoid multiple scans. In our simulation we use the attack log from NS-2 MANET environment and compare the proposed algorithm with the state-of-the-art sequential Pattern Mining algorithm, SPADE and Support Vector Machine with Hadoop environment.
빅데이터 분석은 경영 및 산업현장에서 다양하게 분석되고 사용되고 있으며, 경영의사결정에서 중요한 역할을 한다. 경영분석 업무에 종사하는 빅데이터 분석 직무자의 직무능력은 반드시 미시적인 IT 기술 습득이 요구되는 것이 아니라, Data Scientist로서 다양한 경험과 인문학적 지식과 분석력이 요구되어진다. 그러나, 국가직무능력표준(NCS: National Competency Standards)을 기반으로 하는 국공립 교육기관 및 직무교육기관의 빅데이터 교육은 소프트웨어 공학적 측면에서 진행되고 있으며, 이러한 교육 방법론은 비 기술기반 전공자에게는 어렵고, 비효율적인 결과를 초래하기도 한다. 따라서, 우리는 현재의 빅데이터 플렛폼과 그와 관련된 기술을 분석하여, 그 중에서 현장 직무자에게 반드시 필요한 직무능력 요구수준이 무엇인지를 정의하였다. 그리고, 이를 바탕으로 비 기술기반 전공자를 위한 빅데이터 분석 및 시각화 기법 교육과정을 구성하였다. 특화된 본 교육과정을 경영현장에서 경영분석에 종사하는 금융기관 실무자를 중심으로 Pilot test를 실시한 결과 좀 더 개선된 교육효과를 얻을 수 있었다. 이에 본 연구에서 제시되는 교육방법은 산업전반에서 효율적으로 빅데이터 직무 수행과, 비 기술기반 전공 직무자를 대상으로 빅데이터 분석 및 시각화 교육이 활성화되는 계기가 될 것이다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제14권9호
/
pp.3730-3744
/
2020
This study proposes a deep learning-based evolutionary recommendation model for heterogeneous big data integration, for which collaborative filtering and a neural-network algorithm are employed. The proposed model is used to apply an individual's importance or sensory level to formulate a recommendation using the decision-making feedback. The evolutionary recommendation model is based on the Deep Neural Network (DNN), which is useful for analyzing and evaluating the feedback data among various neural-network algorithms, and the DNN is combined with collaborative filtering. The designed model is used to extract health information from data collected by the Korea National Health and Nutrition Examination Survey, and the collaborative filtering-based recommendation model was compared with the deep learning-based evolutionary recommendation model to evaluate its performance. The RMSE is used to evaluate the performance of the proposed model. According to the comparative analysis, the accuracy of the deep learning-based evolutionary recommendation model is superior to that of the collaborative filtering-based recommendation model.
본 연구는 빅데이터를 활용한 시장성 분석 및 사업화방법론 분석 시스템에 관한 것으로서, 분석대상 제품에 대해 바이럴 마케팅이 가능한 컨텐츠 채널을 토대로 해당 제품의 시장성을 분석할 수 있는 빅데이터를 활용한 시장성 분석 및 사업화방법론 분석 시스템에 관한 것이다. 본 연구에 따른 빅데이터를 활용한 시장성 분석 및 사업화방법론 분석 시스템은 컨텐츠 채널에서 제공되는 마케팅 컨텐츠를 분석하여 분석대상 제품에 대한 시장성을 분석하므로 분석대상 제품에 대한 보다 정확한 바이럴 마케팅 효과를 판별할 수 있다는 장점이 있다고 하겠다.
Journal of information and communication convergence engineering
/
제15권4호
/
pp.217-226
/
2017
Korea has the tenth largest film industry in the world; however, detailed analyses using the factors contributing to successful film commercialization have not been approached. Using big data, this paper analyzed both internal and external factors (including genre, release date, rating, and number of screenings) that contributed to the commercial success of Korea's top 10 ranking films in 2011-2015. The authors developed a WebCrawler to collect text data about each movie, implemented a Hadoop system for data storage, and classified the data using Map Reduce method. The results showed that the characteristic of "release date," followed closely by "rating" and "genre" were the most influential factors of success in the Korean film industry. The analysis in this study is considered groundwork for the development of software that can predict box-office performance.
실험실정보관리시스템(LIMS, Laboratory Information Management System)은 실험실 데이터를 저장, 가공, 검색 그리고 분석하기 위한 중앙화된 데이터베이스로서 검사, 분석, 시험 업무를 수행하는 실험실을 위해 특별히 고안된 컴퓨터 시스템 또는 시스템을 의미한다. 특히 LIMS는 실험실의 운영을 지원하는 기능을 갖추고 있으며, 워크플로우 관리나 데이터 추적지원 등이 필요하다. 본 논문에서는 실험실의 운영을 위하여 빅데이터 자동화 수집 기술의 하나인 크롤링 기술을 활용하여 웹사이트 및 다양한 채널에 존재하는 데이터를 수집한다. 수집된 시험 방법 및 내용 중 시험자가 활용할 수 있는 유용한 시험 방법 및 내용을 추천한다. 그리고 이에 대한 피드백을 관리하여 수집 채널의 검증이 가능한 상호보완적인 LIMS 플랫폼을 구현한다.
본 연구는 빅데이터와 키워드 네트워크 분석을 통해 공동선 증진을 위한 미래교육 방향을 탐색함으로써 미래교육의 방향성 제안에 대한 기초자료를 제공하는 것을 목적으로 한다. Textom에서 제공하는 빅데이터를 기반으로 '미래교육 + 공통선'이라는 키워드로 데이터를 수집한 후 키워드 네트워크 분석을 수행했다. 연구결과 '공익', '사회', 'KAIST 미래경고', '대책', '연구', '미래교육', '정치' 등이 공동선을 위한 미래교육의 사회적 인식에서 공통 키워드인 것으로 나타났다. 이번 연구결과는 공동선 증진을 위한 미래교육에 대한 사회적 인식이 인간, 물리적 환경, 사회적 대응, 학문적 관심, 교육정책, 교육계획 및 관련 변수와 밀접한 관련이 있음을 시사한다. 이와 같은 결과를 바탕으로 공동선 증진을 위한 미래교육의 방향성 제안을 위한 기초자료 마련에 의미 있는 시사점을 제시하였다.
최근 IT 분야의 화두인 클라우드 컴퓨팅과 빅데이터 패러다임을 중소기업(Small and Medium Business: SMB) 차원에서 용이하게 활용하도록 지원하는 시도가 증가하고 있다. 이러한 노력의 일환으로, 본 논문에서는 프라이빗 클라우드 인프라 환경을 대상으로 하둡(Hadoop) 클러스터를 시험적으로 구축하는 프로토타입을 설계하고 구현한다. 프로토타입 구현은 싱글보드, PC, 그리고 서버를 이용하여 각각 수행하고, 그 성능을 테스트한다. 또한, ASA (American Standard Association) Dataset을 이용한 빅데이터 분석을 통해서 구축된 하둡 프로토타입을 활용하는 분석 소프트웨어 시스템의 성능을 통합적으로 검증한 결과를 제시한다. 이를 위해, R, 파이썬, D3, 자바와 같은 오픈소스를 이용하여 분석 소프트웨어 시스템을 구현하고, 테스트를 수행한다.
Journal of Information Technology Applications and Management
/
제24권1호
/
pp.1-10
/
2017
Recently, the problem of plagiarism has emerged as a big social issue because not only literature but also thesis become the target of plagiarism. Even the government requires conformation for plagiarism of high-ranking official's thesis as a standard of their ethical morality. Plagiarism is not just direct copy but also paraphrasing, rewording, adapting parts, missing references or wrong citations. This makes the problem more difficult to handle adequately. We propose a plagiarism detection scheme called a bit signature in which each unique word of document is represented by 0 or 1. The bit signature scheme can find the similar documents by comparing their absolute and relative bit signatures. Experiments show that a bit signature scheme produces better performance for document copy detection than existing similar schemes.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.