• 제목/요약/키워드: Big data model

검색결과 1,384건 처리시간 0.027초

Big Data Analysis and Prediction of Traffic in Los Angeles

  • Dauletbak, Dalyapraz;Woo, Jongwook
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권2호
    • /
    • pp.841-854
    • /
    • 2020
  • The paper explains the method to process, analyze and predict traffic patterns in Los Angeles county using Big Data and Machine Learning. The dataset is used from a popular navigating platform in the USA, which tracks information on the road using connected users' devices and also collects reports shared by the users through the app. The dataset mainly consists of information about traffic jams and traffic incidents reported by users, such as road closure, hazards, accidents. The major contribution of this paper is to give a clear view of how the large-scale road traffic data can be stored and processed using the Big Data system - Hadoop and its ecosystem (Hive). In addition, analysis is explained with the help of visuals using Business Intelligence and prediction with classification machine learning model on the sampled traffic data is presented using Azure ML. The process of modeling, as well as results, are interpreted using metrics: accuracy, precision and recall.

신재생에너지 국가참조표준 시스템 구축 및 개발 - 모델 기반 표준기상년 (System Construction and Data Development of National Standard Reference for Renewable Energy - Model-Based Standard Meteorological Year)

  • 김보영;김창기;윤창열;김현구;강용혁
    • 신재생에너지
    • /
    • 제20권1호
    • /
    • pp.95-101
    • /
    • 2024
  • Since 1990, the Renewable Big Data Research Lab at the Korea Institute of Energy Technology has been observing solar radiation at 16 sites across South Korea. Serving as the National Reference Standard Data Center for Renewable Energy since 2012, it produces essential data for the sector. By 2020, it standardized meteorological year data from 22 sites. Despite user demand for data from approximately 260 sites, equivalent to South Korea's municipalities, this need exceeds the capability of measurement-based data. In response, our team developed a method to derive solar radiation data from satellite images, covering South Korea in 400,000 grids of 500 m × 500 m each. Utilizing satellite-derived data and ERA5-Land reanalysis data from the European Centre for Medium-Range Weather Forecasts (ECMWF), we produced standard meteorological year data for 1,000 sites. Our research also focused on data measurement traceability and uncertainty estimation, ensuring the reliability of our model data and the traceability of existing measurement-based data.

How to improve oil consumption forecast using google trends from online big data?: the structured regularization methods for large vector autoregressive model

  • Choi, Ji-Eun;Shin, Dong Wan
    • Communications for Statistical Applications and Methods
    • /
    • 제29권1호
    • /
    • pp.41-51
    • /
    • 2022
  • We forecast the US oil consumption level taking advantage of google trends. The google trends are the search volumes of the specific search terms that people search on google. We focus on whether proper selection of google trend terms leads to an improvement in forecast performance for oil consumption. As the forecast models, we consider the least absolute shrinkage and selection operator (LASSO) regression and the structured regularization method for large vector autoregressive (VAR-L) model of Nicholson et al. (2017), which select automatically the google trend terms and the lags of the predictors. An out-of-sample forecast comparison reveals that reducing the high dimensional google trend data set to a low-dimensional data set by the LASSO and the VAR-L models produces better forecast performance for oil consumption compared to the frequently-used forecast models such as the autoregressive model, the autoregressive distributed lag model and the vector error correction model.

Strategies of Knowledge Pricing and the Impact on Firms' New Product Development Performance

  • Wu, Chuanrong;Tan, Ning;Lu, Zhi;Yang, Xiaoming;McMurtrey, Mark E.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권8호
    • /
    • pp.3068-3085
    • /
    • 2021
  • The economics of big data knowledge, especially cloud computing and statistical data of consumer preferences, has attracted increasing academic and industry practitioners' attention. Firms nowadays require purchasing not only external private patent knowledge from other firms, but also proprietary big data knowledge to support their new product development. Extant research investigates pricing strategies of external private patent knowledge and proprietary big data knowledge separately. Yet, a comprehensive investigation of pricing strategies of these two types of knowledge is in pressing need. This research constructs an overarching pricing model of external private patent knowledge and proprietary big data knowledge through the lens of firm profitability as a knowledge transaction recipient. The proposed model can help those firms who purchase external knowledge choose the optimal knowledge structure and pricing strategies of two types of knowledge, and provide theoretical and methodological guidance for knowledge transaction recipient firms to negotiate with knowledge providers.

Interactions of Behavioral Changes in Smoking, High-risk Drinking, and Weight Gain in a Population of 7.2 Million in Korea

  • Kim, Yeon-Yong;Kang, Hee-Jin;Ha, Seongjun;Park, Jong Heon
    • Journal of Preventive Medicine and Public Health
    • /
    • 제52권4호
    • /
    • pp.234-241
    • /
    • 2019
  • Objectives: To identify simultaneous behavioral changes in alcohol consumption, smoking, and weight using a fixed-effect model and to characterize their associations with disease status. Methods: This study included 7 000 529 individuals who participated in the national biennial health-screening program every 2 years from 2009 to 2016 and were aged 40 or more. We reconstructed the data into an individual-level panel dataset with 4 waves. We used a fixed-effect model for smoking, heavy alcohol drinking, and overweight. The independent variables were sex, age, lifestyle factors, insurance contribution, employment status, and disease status. Results: Becoming a high-risk drinker and losing weight were associated with initiation or resumption of smoking. Initiation or resumption of smoking and weight gain were associated with non-high-risk drinkers becoming high-risk drinkers. Smoking cessation and becoming a high-risk drinker were associated with normal-weight participants becoming overweight. Participants with newly acquired diabetes mellitus, ischemic heart disease, stroke, and cancer tended to stop smoking, discontinue high-risk drinking, and return to a normal weight. Conclusions: These results obtained using a large-scale population-based database documented interactions among lifestyle factors over time.

The Effect of Big Data-based Fashion Shopping Applications on App Users' Continuous Usage Intention

  • Hong, Hyekyung;Shin, Yeonseo;Lee, MiYoung
    • 패션비즈니스
    • /
    • 제22권6호
    • /
    • pp.83-93
    • /
    • 2018
  • The purpose of this research is to investigate the characteristics of big data-based fashion shopping (BDFS) application, perceived usefulness, and expectation confirmation that influence the continuous usage intention of BDFS application users based on the expectation-confirmation model. A survey was conducted with female consumers in their 20s, who are living in Seoul and Incheon area and have used BDFS applications, A total of 182 responses were used for the data analysis. Five hypotheses were proposed, and regression analyses were conducted to test those hypotheses. The results indicated that the users' perceived usefulness increased with the increase of accuracy and personalization characteristics of the app and the expectation confirmation. The result suggested that it is essential to provide accurate information for users to feel useful and to develop the personalized offerings and services which can be the biggest strength of the big-data based mobile fashion store. It was also found that continuous usage intention increases with increased perceived usefulness and expectation confirmation. This result suggests that expectations can play a critical role in perceiving the usefulness of BDFS applications and the user's expectation confirmation also significantly affected the users' continuous usage intention.

행정 빅데이터 환경에서 컷오프-투표 분류기를 활용한 빅데이터 예측모형의 실험 (Operation Plan of Big Data Prediction Model using Cut-off-Voting Classifier in Administrative Big Data Environment)

  • 이우식
    • 문화기술의 융합
    • /
    • 제10권3호
    • /
    • pp.145-154
    • /
    • 2024
  • 행정 빅데이터를 활용하는 예측 모형을 운영하기 위해서는 정책의 변화 및 변동성 심한 데이터의 특성이 고려가 되어야만 한다. 이런 상황을 고려하여 본 연구에서는 Cut-off Voting Classifier(CVC) 알고리즘을 제안한다. 제안하는 알고리즘은 여러개의 약 분류기를 활용하여 적중률이 급격하게 하락하는 것을 방지하는 알고리즘이다. 본 연구에서는 제안하는 알고리즘을 실험을 통해 성능을 검증한다. 성능검증 결과 급격하게 예측모형 적중률이 하락하는 상황에서도 안정적으로 예측률을 유지한다는 것을 입증할 수 있었다.

KISTI-ML 플랫폼: 과학기술 데이터를 위한 커뮤니티 기반 AI 모델 개발 도구 (KISTI-ML Platform: A Community-based Rapid AI Model Development Tool for Scientific Data)

  • 이정철;안선일
    • 인터넷정보학회논문지
    • /
    • 제20권6호
    • /
    • pp.73-84
    • /
    • 2019
  • 최근 서비스로서의 머신러닝(MLaaS) 개념은 데이터 자체를 제외하고 네트워크 서버, 스토리지 또는 데이터 과학자 없이도 생산적인 서비스 모델을 구축할 수 있다는 점에서 기계학습을 다루는 대부분의 산업 분야와 연구 그룹들의 많은 관심을 받고 있다. 그러나 과학 분야에서는 양질의 빅데이터를 확보하는 가정 자체가 커다란 도전이 된다. 즉, 연구자 간 연구 결과물의 공유가 쉽지 않을 뿐 아니라 과학기술 데이터의 비정형성 문제를 해결해야하는 문제가 선행된다. 본 논문에서 제안된 KISTI-ML 플랫폼은 과학기술 데이터를 위한 AI 모델 고속 개발 도구로서, 머신러닝에 익숙하지 않은 연구자들을 위해 웹 기반 GUI 인터페이스를 제공하고 연구자는 자신의 데이터를 이용하여 머신러닝 코드를 손쉽게 생성하고 구동할 수 있다. 또한 승인된 커뮤니티 멤버들을 중심으로 데이터셋 및 특징 추출에 사용되는 데이터전처리, 학습 네트워크 설계 등이 포함되는 프로그래밍 코드를 공유할 수 있는 환경을 제공한다.

도서관 데이터 성숙도 평가모형 개발 연구 (A Study on the Development of Assessment Model for Data Maturity of Library)

  • 한상우
    • 한국문헌정보학회지
    • /
    • 제57권1호
    • /
    • pp.213-231
    • /
    • 2023
  • 본 연구는 도서관의 데이터 성숙도를 평가할 수 있는 모형(안)을 개발하고 제시하는 것을 목적으로 한다. 이를 위해 데이터 성숙도와 관련된 선행연구를 분석하여 도서관에 적용할 수 있는 성숙도 평가모형을 구성하고자 하였다. 본 연구의 결과 5개 영역의 19개 평가 요소로 구성된 데이터 성숙도 모형을 설계하였고, 성숙도 단계는 5단계로 설정하였다. 향후 데이터 성숙도 평가모형을 이용하여 도서관 빅데이터 사업에 참여하고 있는 도서관의 데이터 성숙도를 측정할 수 있을 것이며, 장기적으로 데이터 기반 도서관 운영 및 데이터 활용 발전 방향성을 제시할 수 있을 것으로 기대할 수 있다.

비용절감 측면에서 클라우드, 빅데이터 서비스를 위한 대용량 데이터 처리 아키텍쳐 (Data Processing Architecture for Cloud and Big Data Services in Terms of Cost Saving)

  • 이병엽;박재열;유재수
    • 한국콘텐츠학회논문지
    • /
    • 제15권5호
    • /
    • pp.570-581
    • /
    • 2015
  • 최근 많은 기관들로부터 클라우드 서비스, 빅 데이터가 향후 대세적인 IT 트렌드 및 확고한 기술로서 예견되고 있다. 또한 현재 IT를 선도하는 많은 벤더를 중심으로 클라우드, 빅데이터에 대한 실질적인 솔루션과 서비스를 제공하고 있다. 이러한 기술들은 기업의 비용절감 측면에서, 클라우드는 인터넷 기반의 다양한 기술들을 기반으로 비즈니스 모델에 대한 자원의 사용을 자유스럽게 선택할 수 있는 장점을 가지고 있어 능동적인 자원 확장을 위한 프로비져닝 기술과 가상화 기술들이 주요한 기술로 주목 받고 있다. 또한 빅데이터는 그동안 분석하지 못했던 새로운 비정형 데이터들에 대한 분석 환경을 제공함으로서 데이터 예측모델의 차원을 한층 높이고 있다. 하지만 클라우드 서비스, 빅데이터의 공통점은 대용량 데이터를 기반으로 서비스 또는 분석을 요하고 있어, 초기 발전 모델부터 대용량 데이터의 효율적인 운영 및 설계가 중요하게 대두 되고 있다. 따라서 본 논문에 클라우드, 빅데이터 서비스를 위한 대용량 데이터 기술 요건들을 토대로 데이터 처리 아키텍처를 정립하고자 한다. 특히, 클라우드 컴퓨팅을 위해 분산 파일 시스템이 갖추어야 할 사항들과 클라우드 컴퓨팅에서 활용 가능한 오픈소스 기반의 하둡 분산 파일 시스템, 메모리 데이터베이스 기술요건을 소개하고, 빅데이터, 클라우드의 대용량 데이터를 비용절감 측면에서 효율적인 압축기술 요건들을 제시한다.