• Title/Summary/Keyword: Big data exchange

Search Result 90, Processing Time 0.029 seconds

A Study on the Development of Phased Big Data Distribution Model Based on Big Data Distribution Ecology (빅데이터 유통 생태계에 기반한 단계별 빅데이터 유통 모델 개발에 관한 연구)

  • Kim, Shinkon;Lee, Sukjun;Kim, Jeonggon
    • Journal of Digital Convergence
    • /
    • v.14 no.5
    • /
    • pp.95-106
    • /
    • 2016
  • The major thrust of this research focuses on the development of phased big data distribution model based on the big data ecosystem. This model consists of 3 phases. In phase 1, data intermediaries are participated in this model and transaction functions are provided. This system consists of general control systems, registrations, and transaction management systems. In phase 2, trading support systems with data storage, analysis, supply, and customer relation management functions are designed. In phase 3, transaction support systems and linked big data distribution portal systems are developed. Recently, emerging new data distribution models and systems are evolving and substituting for past data management system using new technology and the processes in data science. The proposed model may be referred as criteria for industrial standard establishment for big data distribution and transaction models in the future.

A Study on Construction of Aids to Navigation Big Data Based on S-201

  • Kim, Yunjee;Oh, Se-woong;Jeon, Minsu
    • Journal of Navigation and Port Research
    • /
    • v.46 no.5
    • /
    • pp.409-417
    • /
    • 2022
  • The International Association of Lighthouse Authorities (IALA) utilizes a questionnaire to investigate the status of Aids to Navigation (AtoN) around the world. However, results of the IALA questionnaire have limited use because respondent understanding is inconsistent. In addition, there is uncertainty regarding the appropriateness of the questionnaire content. Furthermore, the overall response rate is low. Therefore, the status of AtoN is not clearly understood. AtoN data from around the world are generated hourly. Thus, big data solutions are required to effectively exploit the information. Digitization of analog data is an important component of building big data. Hence, the IALA has developed a Maritime Resource Name (MRN) scheme and an information exchange standard. Here, we used the AtoN information exchange standard and designed an S-201-based big data construction process that could collect and manage global AtoN information. In this study, construction of an IALA AtoN portal was proposed as the core of the construction of the AtoN big data. The process was divided into three stages. IALA AtoN portal is developed by IALA with the goal to provide various meaningful statistical analysis results based on AtoN data while managing AtoN information around the world based on S-201. If an AtoN portal capable of constructing S-201-based big data is developed, then a data collection and storage system that can gather basic S-201 AtoN data from the IALA and global AtoN management agencies could be achieved. Furthermore, insightful statistical analysis of AtoN status worldwide and changes in manufacturing technology will be possible.

A Study on the de-identification of Personal Information of Hotel Users (호텔 이용 고객의 개인정보 비식별화 방안에 관한 연구)

  • Kim, Taekyung
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.12 no.4
    • /
    • pp.51-58
    • /
    • 2016
  • In the area of hotel and tourism sector, various research are analyzed using big data. Big data is being generated by any digital devices around us all the times. All the digital process and social media exchange produces the big data. In this paper, we analyzed the de-identification method of big data to use the personal information of hotel guests. Through the analysis of these big data, hotel can provide differentiated and diverse services to hotel guests and can improve the service and support the marketing of hotels. If the hotel wants to use the information of the guest, the private data should be de-identified. There are several de-identification methods of personal information such as pseudonymisation, aggregation, data reduction, data suppression and data masking. Using the comparison of these methods, the pseudonymisation is discriminated to the suitable methods for the analysis of information for the hotel guest. Also, among the pseudonymisation methods, the t-closeness was analyzed to the secure and efficient method for the de-identification of personal information in hotel.

The Impact of Business Intelligence on the Relationship Between Big Data Analytics and Financial Performance: An Empirical Study in Egypt

  • Mostafa Zaki, HUSSEIN;Samhi Abdelaty, DIFALLA;Hussein Abdelaal, SALEM
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.10 no.2
    • /
    • pp.15-27
    • /
    • 2023
  • The purpose of this research is to investigate the impact of Business Intelligence (BI) on the relation between Big Data Analytics (BDA) and Financial Performance (FP), at the beginning we reviewed the academic accounting and finance literature to develop the theoretical framework of business intelligence, big data and financial performance in terms of definition, motivations and theories, then we conduct an empirical analysis based on questionnaire-base survey data collected. The researchers identified the study population in the joint-stock companies listed on the Egyptian Stock Exchange and operating in the sectors and activities related to modern technologies in information systems, big data analytics, and business intelligence, in addition to the auditing offices that review the financial reports of these companies, and The sector closest to the research objective is the communications, media, and information technology sector, where the survey list was distributed among the sample companies with (15) lists for each company, and (15) lists for each audit office, so that the total sample becomes (120) individuals (with a response rate 83.3%), The results show, First, Big data analytics significantly affect organizations' financial performance, second, Business intelligence mediates (partial) the relationship between big data analytics and financial performance.

The Analysis of News Articles and Currency Exchange Rates (신문 기사와 환율 분석)

  • Kim, Dong Hyun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.89-91
    • /
    • 2017
  • A currency exchange is the rate to exchange currencies between different countries and the one of important factors to measure the economic size or status of a country. The currency exchange is affected by various economic or social events and changed dynamically. However, since too many economic and social factors affect the exchange rate and the leverage rate of each factor is so floating, it is difficult to define clearly the relationships between the exchange rate and the specific factor. In this paper, we analyze the data pattern for the exchange rate and news articles. To do this, we counts the frequencies of words presented in the news articles during specific periods and compare the frequencies with the margins of exchange rates.

  • PDF

Financial and Economic Risk Prevention and Countermeasures Based on Big Data and Internet of Things

  • Songyan Liu;Pengfei Liu;Hecheng Wang
    • Journal of Information Processing Systems
    • /
    • v.20 no.3
    • /
    • pp.391-398
    • /
    • 2024
  • Given the further promotion of economic globalization, China's financial market has also expanded. However, at present, this market faces substantial risks. The main financial and economic risks in China are in the areas of policy, credit, exchange rates, accounting, and interest rates. The current status of China's financial market is as follows: insufficient attention from upper management; insufficient innovation in the development of the financial economy; and lack of a sound financial and economic risk protection system. To further understand the current situation of China's financial market, we conducted a questionnaire survey on the financial market and reached the following conclusions. A comprehensive enterprise questionnaire from the government's perspective, the enterprise's perspective and the individual's perspective showed that the following problems exist in the financial and economic risk prevention aspects of big data and Internet of Things in China. The political system at the country's grassroots level is not comprehensive enough. The legal regulatory system is not comprehensive enough, leading to serious incidents of loan fraud. The top management of enterprises does not pay enough attention to financial risk prevention. Therefore, we constructed a financial and economic risk prevention model based on big data and Internet of Things that has effective preventive capabilities for both enterprises and individuals. The concept reflected in the model is to obtain data through Internet of Things, use big data for screening, and then pass these data to the big data analysis system at the grassroots level for analysis. The data initially screened as big data are analyzed in depth, and we obtain the original data that can be used to make decisions. Finally, we put forward the corresponding opinions, and their main contents represent the following points: the key is to build a sound national financial and economic risk prevention and assessment system, the guarantee is to strengthen the supervision of national financial risks, and the purpose is to promote the marketization of financial interest rates.

Study on Proactive Data Process Orchestration in Distributed Cloud

  • Jong-Sub Lee;Seok-Jae Moon
    • International journal of advanced smart convergence
    • /
    • v.13 no.3
    • /
    • pp.135-142
    • /
    • 2024
  • Recently, along with digital transformation, technologies such as cloud computing, big data, and artificial intelligence have been actively introduced. In a situation where these technological changes are progressing rapidly, it is often difficult to manage processes efficiently using existing simple workflow management methods. Companies providing current cloud services are adopting virtualization technologies, including virtual machines (VMs) and containers, in their distributed system infrastructure for automated application deployment. Accordingly, this paper proposes a process-based orchestration system for integrated execution of corporate process-oriented workloads by integrating the potential of big data and machine learning technologies. This system consists of four layers as components for performing workload processes. Additionally, a common information model is applied to the data to efficiently integrate and manage the various formats and uses of data generated during the process creation stage. Moreover, a standard metadata protocol is introduced to ensure smooth exchange between data. This proposed system utilizes various types of data storage to store process data, metadata, and analysis models. This enables flexible management and efficient processing of data.

Reinforcing Financial Data Exchange Security Policy with Information Security Issues of Data Broker (금융데이터거래 정보보호 강화방안: 데이터브로커 보안이슈를 중심으로)

  • Kim, Su-bong;Kwon, Hun-yeong
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.32 no.1
    • /
    • pp.141-154
    • /
    • 2022
  • In the data economy era, various policies are being implemented to create an active data distribution environment. In South Korea, the formation of a big data distribution platform and data trading began with the launch of the Financial Data Exchange under public data governance. In the case of major advanced countries in the data field, they have built a data distribution environment based on the data broker industry for decades and have strengthened national data competitiveness through added values generated from the industry. However, behind the active data distribution through data brokers, there are numerous information security issues, which have resulted in various privacy issues and national security threats. These problems can occur sufficiently in the process of domestic financial data exchange. In our study, we analyzed various information security issues of data trading caused by data brokers and derived information security requirements to be considered when trading data. We verified whether information security requirements are well reflected in the information security policy for each transaction stage of the domestic financial data exchange. Based on the verification, measurements to strengthen information security for financial data exchange are presented in our paper.

Doing social big data analytics: A reflection on research question, data format, and statistical test-Convergent aspects (소셜네트워크서비스 빅데이터 분석을 위한 연구문제 설정과 통계적 제 문제-융합적 관점)

  • Park, Han-Woo;Choi, Kyoung-ho
    • Journal of Digital Convergence
    • /
    • v.14 no.12
    • /
    • pp.591-597
    • /
    • 2016
  • Research question and method play important roles in conducting a research in a scientifically valid way. In today's digitalized research environment, social network service (SNS) has rapidly become a new source of big data. While this shift provides new challenges for researchers in Korea, there is little scholarly discussion of how research questions can be framed and what statistical methods can be applied. This article suggests some basic but primary types of example questions for researchers employing social big data analytics. Further, we illustrate the interface of the intended data set specifically for SNS-mediated communication and information exchange behaviors. Lastly, a statistical test known as proper method for social big data is introduced.

Transaction Processing Method for NoSQL Based Column

  • Kim, Jeong-Joon
    • Journal of Information Processing Systems
    • /
    • v.13 no.6
    • /
    • pp.1575-1584
    • /
    • 2017
  • As interest in big data has increased recently, NoSQL, a solution for storing and processing big data, is getting attention. NoSQL supports high speed, high availability, and high scalability, but is limited in areas where data integrity is important because it does not support multiple row transactions. To overcome these drawbacks, many studies are underway to support multiple row transactions in NoSQL. However, existing studies have a disadvantage that the number of transactions that can be processed per unit of time is low and performance is degraded. Therefore, in this paper, we design and implement a multi-row transaction system for data integrity in big data environment based on HBase, a column-based NoSQL which is widely used recently. The multi-row transaction system efficiently performs multi-row transactions by adding columns to manage transaction information for every user table. In addition, it controls the execution, collision, and recovery of multiple row transactions through the transaction manager, and it communicates with HBase through the communication manager so that it can exchange information necessary for multiple row transactions. Finally, we performed a comparative performance evaluation with HAcid and Haeinsa, and verified the superiority of the multirow transaction system developed in this paper.