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Abstract 

 Recently, along with digital transformation, technologies such as cloud computing, big data, and artificial 

intelligence have been actively introduced. In a situation where these technological changes are progressing 

rapidly, it is often difficult to manage processes efficiently using existing simple workflow management methods. 

Companies providing current cloud services are adopting virtualization technologies, including virtual machines 

(VMs) and containers, in their distributed system infrastructure for automated application deployment. 

Accordingly, this paper proposes a process-based orchestration system for integrated execution of corporate 

process-oriented workloads by integrating the potential of big data and machine learning technologies. This 

system consists of four layers as components for performing workload processes. Additionally, a common 

information model is applied to the data to efficiently integrate and manage the various formats and uses of data 

generated during the process creation stage. Moreover, a standard metadata protocol is introduced to ensure 

smooth exchange between data. This proposed system utilizes various types of data storage to store process data, 

metadata, and analysis models. This enables flexible management and efficient processing of data. 
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1. INTRODUCTION 

Recently, cloud-based platform technology has been actively introduced [1]. With technological changes 

progressing rapidly, companies often find it difficult to efficiently manage business processes using traditional 

simple workflow management methods [2]. In this paper, we propose an orchestration system for proactive 

data processing in a distributed cloud for workload execution. The proposed system consists of four layers: 

business process-based query layer, process layer, XMDR [3] layer (Information Layer), and resource layer. 

This hierarchical configuration applies a common information model to data to efficiently integrate and 

manage the various formats and uses of data that occur during the workload process creation stage. 

Additionally, the EMRA [4] protocol, a standard metadata, is introduced for smooth interoperability between 
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data. The system utilizes various types of data storage to store in-process data, metadata, and analytical models, 

allowing flexible management and efficient processing in data interoperability. Additionally, focusing on big 

data generated in the industrial automation field, the paper presents the procedures necessary for recognizing 

hidden patterns and building predictive models using machine learning. In particular, when considering 

machine learning use cases, training data is first loaded into a data store. This data goes through a pre-

processing process for model learning and then proceeds to the optimal model selection and application stage. 

The selected model is evaluated using test data, and this entire process is executed within a batch processing 

framework. Additionally, a visual layer is provided to intuitively express the analyzed prediction results, 

making the results more accessible and actionable for users. Chapter 2 describes related research, and Chapter 

3 details the components and operation scenarios of the proposed system. Chapter 4 outlines the experimental 

test environment and presents the experimental results. Finally, Chapter 5 concludes with a discussion of the 

findings and suggestions for future work. 

 

2. RELATED WORK 

The benefits of PCA (Principal Component Analysis) [5] data analysis architecture in a corporate 

environment are manifold. In particular, it allows learned models to be quickly and accurately applied to 

current process data. Using data analysis techniques such as PCA, high-dimensional data can be reduced to 

low dimensions, reducing the complexity of analysis and increasing computational efficiency. This approach 

plays a significant role in versatile enterprise applications such as condition monitoring, anomaly detection, 

production process optimization, and customer behavior analysis. In a cloud computing environment, a 

workload [6] consists of a combination of multiple IT assets, which may include virtual machines (VMs), 

databases, applications, APIs, network resources, and storage. These assets support one or more business 

processes or tasks and may interact with each other and/or depend on other IT assets or a larger platform. The 

components of Extended Metadata Registry Access (EMRA) include a central metadata registry, extension 

modules, API gateway, access control system, and monitoring and logging system [7]. Through this, metadata 

is collected and stored from various data sources, access is allowed or restricted through API according to user 

permissions, and monitoring and logging are performed in real time to ensure scalability and security at the 

same time. 

 

3. PROPOSED SYSTEM 

3.1. Component 

We propose an orchestration system for process-based queries that execute workloads in an integrated 

manner. As an application of the Lambda architecture, this proposed system can efficiently perform large-

scale batch data processing in addition to real-time processing of stream data. This makes it possible to flexibly 

respond to various workloads and data types that occur within the process, allowing end users to make faster 

and more accurate business decisions. To further enhance this flexibility and scalability, the main contribution 

proposed in this paper is to efficiently manage and utilize various computing resources through orchestration 

technology. The proposed system consists of different layers as shown in Figure 1. 
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Figure 1. The Conceptual Architecture 

As an application of the Lambda architecture, this proposed system can efficiently perform large-scale batch 

data processing in addition to real-time processing of stream data. This makes it possible to flexibly respond 

to various workloads and data types that occur within the process, allowing end users to make faster and more 

accurate business decisions. To further enhance this flexibility and scalability, the main contribution proposed 

in this paper is to efficiently manage and utilize various computing resources through orchestration technology. 

The proposed system consists of different layers as shown in Figure 1. 

 

◼ Query layer. This layer specifies business needs, use cases, and tasks to be handled. In particular, 

the connectivity of the system for data sharing must be expanded and visible. Visual interfaces and 

dashboards are therefore important for understanding difficult concepts or identifying hidden 

patterns within process data. The visualization layer displays prediction results and allows adding 

expert knowledge in the form of semantic annotations to facilitate data analysis tasks. Therefore, this 

layer includes interactive analytics software, dashboards, and client applications. 

 

◼ Process layer. This layer analyzes process internal data to identify hidden patterns and builds an 

ML prediction model. Training data for each machine learning use case is loaded from the data store 

and preprocessed for model training. The next step is to select and apply an appropriate model using 

the training data. Afterwards, the model is evaluated using the training data. These steps are called 

model construction and can be performed in distributed batch processing. Once the trained model is 

suitable to solve the query problem, it can be deployed into distributed stream processing for online 

prediction on stream data. 

 

◼ Metadata layer. At this layer, it is applied in a metadata registry or a standardized information 

model of a specific branch suitable for data interoperability in the process. Metadata is maintained 

at this layer for data access and analysis. Accordingly, this paper applies EMRA [8], an extended 

version of metadata. Additionally, various types of distributed data storage are used to store process 

data, metadata analysis, and models.  
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◼ Resource layer. This layer includes devices, sensors, clusters, DW, legacy systems, etc. These 

elements constitute a company's core data source and are converted into various forms of data. Since 

this data has various formats and uses, it needs to be integrated through a common information model 

using a public cloud or cluster. This encompasses the comprehensive process of data collection, 

integration, and the transition between the physical and digital worlds. 

 

3.2. System Operation flowchart 

The operation scenario of the system proposed in this paper is shown in Figure 2.  

 

 

Figure 2. The System Flowchart 

1. When you access the system dashboard, you can immediately and visually check the current status of 

your workload. This includes real-time updates on inventory levels, machine status, and throughput throughout 

the entire production process. With real-time monitoring all data generated by the machine, from operational 

statistics to error notifications, is displayed immediately. This allows us to respond quickly to urgent issues, 

minimizing downtime. For example, if the machine failure rate predicted by the machine learning model 

exceeds a certain threshold, an immediate warning is issued to enable proactive response. 

2. Data analysis algorithms process the incoming data stream to detect signs or patterns of machine 

performance degradation. Using real data analysis and machine learning models, we predict the optimal 

maintenance schedule for machines showing signs of poor performance or failure. For example, by analyzing 

data such as temperature, pressure, and humidity collected from sensors, we predict the possibility of machine 

failure or develop a model that automatically classifies product quality. This predictive maintenance approach 

significantly reduces unplanned downtime by proactively addressing potential defects. Based on this predicted 

data, managers plan maintenance schedules and issue work orders to ensure smooth operation. 

3. All data in the product line is stored via EMRA along with metadata. All data generated or collected in 

the smart factory is centrally managed. This layer stores sensor data, operational records, metadata, etc. This 

layer maintains data consistency and integrity, and performs indexing and tagging to easily extract data for 

necessary analysis or prediction. The architecture is designed to enable stable storage and retrieval of data even 

in a highly distributed environment. This structured approach facilitates easy retrieval and makes accumulated 
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data immediately available for future analysis and reporting. In other words, beyond simple storage, this layer 

provides advanced data analysis capabilities to gain real insights from accumulated data. 

4. It plays a role in connecting physical assets, machines, sensors, and inventory within the factory with the 

digital environment. The system integrates various data formats and protocols to create a single integrated data 

stream. Since a smart factory is a dynamic environment with the possibility of introducing new machines or 

upgrading existing machines, the integration of these new assets is important. For example, data collected from 

IoT sensors is preprocessed here and, if necessary, sent to a data store in the information layer or a machine 

learning model in the functional layer. Through this process, the physical and digital worlds are seamlessly 

connected, increasing the efficiency and level of automation in smart factories. 

5. Smart factory workloads are continuously monitored to maintain optimal work efficiency. The system's 

responsiveness allows for quick readjustments, ensuring maximum operational efficiency. With the support of 

a container orchestration system, all resources (from human labor to machines) within the smart factory are 

fully utilized to achieve optimal production results. 

 

4. Experimental analysis and results 

This paper proposes a system tested across several virtual machines to construct the necessary cluster for 

implementing PCA (Principal Component Analysis) parallel computing in a big data environment. To 

implement parallel computation of PCA, we created the necessary clusters by creating several virtual machines 

in the big data cluster. The virtual machine resource specifications applied are detailed in Table 1. Information 

about the technology, infrastructure, and configuration required for the experiment is shown in Table 2. 

 

Table 1. VM Resource Specification  

Item Details 

Processor 
 
Memory/Storage 
 
Network 
OS 

- Intel(R) Core(TM) i5-4670 CPU @ 3.40GHz   3.40 GHz 
- Virtual CPUs (4 sockets with 2 cores per socket)32 
16GB / 700GB SSD 
1 Gbit/s network card 
Ubuntu 16.04 xenial 

 

Table 2. Cluster Configuration Specification 

Category Framework Description 

Data Ingestion Kafka Cluster 3 brokers, 20 partitions for the input and output 
topics 

Data Storage Hadoop Cluster 
MongoDB 
Influx DB 

1 name node and 3 data nodes 
single node 
single node 

Batch Processing Spark Cluster 1 master node and 3 workers 
Stream Processing Kubernetes Cluster 1 master and 3 nodes 

 

The specifications for the proposed system experiment ensure diverse and integrated data processing capabilities, 

high scalability, data stability, and flexibility. Real-time and batch data processing is possible, and the cluster 

structure can flexibly respond to increases in data volume. The experiment enables users to easily and efficiently 

work with data through an integrated interface, enhancing the architecture's reliability through experimental 

verification. Figure 3 implements approximately 36 million historical measurement vectors (each with 41 
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components) consisting of air conditioning management process data into a big data platform as a data set. 

 

  

Figure 3. Test Simulation Model Interface  

The simulation model interface attempts to perform the task of training a deep Q-learning model in parallel by 

leveraging Python's threading library. In particular, the Worker class inherits threading. Thread and is designed 

to create multiple threads and run them in parallel. Each thread is responsible for setting up an environment, 

constructing a deep learning model, and using this model to learn optimal behavior in a given environment. In 

the part where hyperparameters are set, the exploration rate, number of actions, number of epochs, etc. are 

defined, and standards for how the AI should behave under specific conditions are established. Training 

sessions alternate between exploration and exploitation, updating the state of the environment and attempting 

to optimize the AI's rewards. This process is repeated until a certain condition is met or an early stopping 

condition is reached. Additionally, the AI's performance can be tracked for each epoch, and learning can be 

stopped early through a patience mechanism if there is no improvement. Ultimately, each thread is responsible 

for independently training AI models and storing the models with the best performance. 

 

 

Figure 4. Test simulation result: (a) PCA interface results, (b) PCA interface eigenvector result, (c) 

Interface data standard deviation, (d) Interface data standard deviation, (e) Interface results of 

simulation model 
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Training sessions alternate between exploration and exploitation, updating the state of the environment and 

attempting to optimize the AI's rewards. This process is repeated until a certain condition is met or an early 

stopping condition is reached. Additionally, the AI's performance can be tracked for each epoch, allowing for 

early termination of learning through a patience mechanism in the absence of improvement. Ultimately, each 

thread is responsible for independently training AI models and storing the models with the best performance. 

The main thread creates and executes these worker threads, terminating upon completion of all tasks. <Figure 

4> (a) shows the model interface results. The results obtained through PCA list the names of several entities 

and their corresponding PCA scores. We are currently performing principal component analysis (PCA) on 

heating and cooling system data, which is effectively reducing the dimensionality of the original data. Through 

this analysis, a complex dataset originally consisting of 41 variables is condensed into a few highly volatile 

key elements. This process greatly improves computational efficiency and provides information in a refined 

form that is less sensitive to noise in the data. <Figure 4> (b) is the interface eigenvector result. Here, each 

given row represents a principal component, and each column is an element of the corresponding eigenvector. 

These elements represent the weight of the eigenvector for each feature (41 components) of the original dataset. 

For example, the Eigenvector 1 column defines the direction of PC1, which represents the greatest variability 

in the data. Different eigenvectors represent variability in different directions in the dataset. Eigenvectors vary 

depending on the structure and pattern of the data. Each principal component direction is a new axis in the 

original data space, and the eigenvector elements quantify the contribution of the original features to this new 

axis. Figure 4 (c) Average of interface data. The data average represents the average value of each element of 

the eigenvector. The 'Average of Eigenvector' column shows the average values for each element across 

principal components (PC1, PC2, ..., PC7). These average values are the average calculated for each dimension 

of the vector representing the direction of each principal component. <Figure 4> (d) Standard deviation of 

interface data. It represents the standard deviation for various variables derived through PCA analysis. The 

displayed values reflect the volatility and spread of the data distribution for each variable, and a higher standard 

deviation means that the data values of that variable are more spread out from the mean. These standard 

deviation values play an important role in interpreting the results of PCA analysis or evaluating the stability 

and consistency of data. Additionally, it can be useful in determining the degree of dispersion of observed 

values for each variable. Figure 4 (d) is the interface result of the simulation model. The standard deviation of 

each principal component represents the contribution of that principal component to the variance of the entire 

dataset. The ratio of variance is the square of the standard deviation of the corresponding principal component 

divided by the total variance. The ratio of cumulative variance represents the cumulative sum of the variance 

ratios. Information obtained through principal component analysis (PCA) results demonstrates the 

effectiveness of PCA in reducing data dimensionality and summarizing information. In particular, it is revealed 

that the first principal component (PC1) contains the most information, accounting for 40% of the data 

variability. This suggests that PC1, as the main axis capturing the most variation, contains significant 

information, offering a clearer understanding of the dataset's intrinsic structure and patterns. The cumulative 

variance ratio of the top three principal components (PC1, PC2, PC3) containing the main information of the 

dataset reaches 75%, confirming that they represent important characteristics of the data. These results mean 

that much of the important information in the original dataset can be maintained even when the data is reduced. 

 

5. CONCLUSION 

This paper proposes a system that efficiently integrates complex processes within a company in real time 

in a distributed cloud. This system facilitates data integration with a metadata-centric approach, aiming to 

integrate various data sources and types in the cloud, effectively enabling data exchange. Through experiments, 
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this paper demonstrated that the proposed system processed a large-scale air conditioning management data 

set, offering faster processing speed and superior scalability compared to traditional batch processing methods. 

The system proposed in this paper enables data integration by sharing the same information model, thus 

facilitating smooth data exchange among heterogeneous systems. Additionally, the system offers scalability 

across various layers, along with redundancy, enhancing its capability for parallel PCA implementation. In 

conclusion, the research results of this system provide an important reference point for developing new 

architectures and methodologies for data-driven business process management and optimization. This is 

expected to have a significant impact on the future development direction of cloud computing, big data, and 

machine learning technologies. 
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