• Title/Summary/Keyword: Big Y development

Search Result 1,583, Processing Time 0.034 seconds

A Study on Policy Priorities for Implementing Big Data Analytics in the Social Security Sector : Adopting AHP Methodology (AHP분석을 활용한 사회보장부문 빅 데이터 활용가능 영역 탐색 연구)

  • Ham, Young-Jin;Ahn, Chang-Won;Kim, Ki-Ho;Park, Gyu-Beom;Kim, Kyoung-June;Lee, Dae-Young;Park, Sun-Mi
    • Journal of Digital Convergence
    • /
    • v.12 no.8
    • /
    • pp.49-60
    • /
    • 2014
  • The primary purpose of this paper is to find out what issues are important in the Social Security sector, and then, through AHP methodology, this study analyzes what kind of big data methodologies and projects can be implemented to solves these issues. To the aim, this paper first confirmed 8 big data projects from reviewing all issues in the Social Security sector such as administrative works and social policies. After the result of pairwise comparison, policy validity is most important factors rather then effectiveness and practicability. With regard to the priorities among sub-big data projects, the project about preventing improper recipients has come out the most important project in terms of validity, effectiveness and practicability. And the results showed that the project about outreaching and reducing a blind spot on the welfare sector is weighed as a significant project. The results of this paper, in particular 8 sub-big data projects, will be useful to anyone who is interested in using big data and its methodologies for the social welfare sector.

Does Big Data Matter to Value Creation? : Based on Oracle Solution Case (Does Big Data Matter to Value Creation? : 오라클(Oracle) 솔루션을 중심으로)

  • Kim, Yonghee;You, Eungjoon;Kang, Miseon;Choi, Jeongil
    • Journal of Information Technology Services
    • /
    • v.11 no.3
    • /
    • pp.39-48
    • /
    • 2012
  • It is essential that firm makes a rational and scientific decision making and creates a news value for the future direction. To do so, many firms attempt to collect meaningful data and find the filtered and refined implication for the better customer relationship and the active market drive through the various analytic tools. Among the possible IT solutions, utilization of 'Big Data' is becoming more attractive and necessary in such a way that it would help firms obtain the systemized and demanding information and facilitate their decision making process to keep up with the market needs. In this paper, it introduces the concepts and development of 'Big Data' recognized as a IT resource and solution under the rapidly changing firm environment. This study also presents the several firm cases using Big Data' and the Oracle's total data management and analytic solutions in order to support the application of 'Big Data'. Finally this paper provides a holistic viewpoint and realistic approach on use of 'Big Data' to create a new value.

A review of big data analytics and healthcare (빅데이터 분석과 헬스케어에 대한 동향)

  • Moon, Seok-Jae;Lee, Namju
    • Journal of the Korean Applied Science and Technology
    • /
    • v.37 no.1
    • /
    • pp.76-82
    • /
    • 2020
  • Big data analysis in healthcare research seems to be a necessary strategy for the convergence of sports science and technology in the era of the Fourth Industrial Revolution. The purpose of this study is to provide the basic review to secure the diversity of big data and healthcare convergence by discussing the concept, analysis method, and application examples of big data and by exploring the application. Text mining, data mining, opinion mining, process mining, cluster analysis, and social network analysis is currently used. Identifying high-risk factor for a certain condition, determining specific health determinants for diseases, monitoring bio signals, predicting diseases, providing training and treatments, and analyzing healthcare measurements would be possible via big data analysis. As a further work, the big data characteristics provide very appropriate basis to use promising software platforms for development of applications that can handle big data in healthcare and even more in sports science.

A Study on a Way to Utilize Big Data Analytics in the Defense Area (국방분야 빅데이터 분석의 활용가능성에 대한 고찰)

  • Kim, Seong-Woo;Kim, Gak-Gyu;Yoon, Bong-Kyu
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.39 no.2
    • /
    • pp.1-19
    • /
    • 2014
  • Recently, one of the core keywords in information technology (IT) as well as areas such as business management is big data. Big data is a term that includes technology, personnel, and organization required to gather/manage/analyze collection of data sets so large and complex that it becomes difficult to manage and analyze using traditional tools. The military has been accumulating data for a long period due to the organization's characteristic in placing emphasis on reporting and records. Considering such characteristic of the military, this study verifies the possibility of improving the performance of the military organization through use of big data and furthermore, create scientific development of operation, strategy, and support environment. For this purpose, the study organizes general status and case studies related to big data, traces back examples of data utilization by Korean's national defense sector through US military data collection and case studies, and proposes the possibility of using and applying big data in the national defense sector.

A Study on the Effect of Analytic Resources to Business Performance under Big Data Environments (빅데이터 환경에서 분석 자원이 기업 성과에 미치는 영향)

  • Kim, Seung-Hyun;Park, Jooseok;Park, Jea-Hong;Kim, Inhyun
    • The Journal of Bigdata
    • /
    • v.1 no.1
    • /
    • pp.23-32
    • /
    • 2016
  • With the rapid development of information technology, we can manage not only structured data but also unstructured data. Big data environments drive new business values. This study examines the effect of analytic resources to business performance under big data environments. Recent worldwide reports showed empirical performance results of big data applications. Compared to these reports, we attempt to analyze resources of big data applications to companies in Korea. This study results in current status of big data use in Korea. and will help to develop a maturity model of big data applications.

  • PDF

Development of Big Data System for Energy Big Data (에너지 빅데이터를 수용하는 빅데이터 시스템 개발)

  • Song, Mingoo
    • KIISE Transactions on Computing Practices
    • /
    • v.24 no.1
    • /
    • pp.24-32
    • /
    • 2018
  • This paper proposes a Big Data system for energy Big Data which is aggregated in real-time from industrial and public sources. The constructed Big Data system is based on Hadoop and the Spark framework is simultaneously applied on Big Data processing, which supports in-memory distributed computing. In the paper, we focus on Big Data, in the form of heat energy for district heating, and deal with methodologies for storing, managing, processing and analyzing aggregated Big Data in real-time while considering properties of energy input and output. At present, the Big Data influx is stored and managed in accordance with the designed relational database schema inside the system and the stored Big Data is processed and analyzed as to set objectives. The paper exemplifies a number of heat demand plants, concerned with district heating, as industrial sources of heat energy Big Data gathered in real-time as well as the proposed system.

Incremental MapReduce of atypical Big Data Processing in Mobile Game (모바일게임에 적용 가능한 비정형 Big Data 처리를 위한 Incremental MapReduce)

  • Park, Sung-Joon;Kim, Jung-Woong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2014.04a
    • /
    • pp.301-304
    • /
    • 2014
  • 비정형 게임 Big Data에서 고효율 정보를 추출하고, 신뢰 할 수 있는 클러스터 게임서버 환경을 위한 병렬 처리를 위해 MapReduce를 사용한다. 본 논문에서는 빈번하게 입력되는 신규 게임데이터 처리를 위해 함수 Demap을 사용하는 Incremental MapReduce를 적용하여 불필요한 중간 값 저장과 재계산 없이 점차적으로 MapReduce 함수를 실행한다.

Finding Industries for Big Data Usage on the Basis of AHP (AHP 기반의 빅데이터 활용을 위한 산업 탐색)

  • Lee, Sang-Won;Kim, Sung-Hyun
    • Journal of Digital Convergence
    • /
    • v.14 no.7
    • /
    • pp.21-27
    • /
    • 2016
  • Big Data is gathering all the attention from every business community. Pervasive use of machine-to-machine (M2M) applications and mobile devices bring an explosion of data. By analyzing this data, the private and public sectors can benefit in the areas of cost reduction and productivity. The Korean government is actively pursuing Big Data initiatives to promote its usage. This paper aims to select industries which fit for the development of Big Data with a verification of the experts. The analytic hierarchy process (AHP) is applied to systematically derive the opinion of more than 50 professionals. Medical / welfare, transportation / warehousing, information and communications / information security, energy, the financial sector have been identified as promising industries. The results can be utilized in developing Big Data best practices thus contributing industrial development.

Status and Prospects of Farm Mechanization in China

  • Guozhu, Hua
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.87-97
    • /
    • 1993
  • China has a big population(22% of the world) and small cultivated land( only 7% of the world). Agriculture is very important and it has solved the problem of people's eating and wearing, and now it is creating favourable conditions for the state modernization and people's comparatively well-off. Farm mechanization plays an role in agriculture and has primarily developed. But the development is complicated since the big rural labour force and the small per capita cultivated land. The development and features of farm mechanization in China was summarized and the future task and its countermeasure was discussed in this paper.

  • PDF

Healthcare service analysis using big data

  • Park, Arum;Song, Jaemin;Lee, Sae Bom
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.4
    • /
    • pp.149-156
    • /
    • 2020
  • In the Fourth Industrial Revolution, successful cases using big data in various industries are reported. This paper examines cases that successfully use big data in the medical industry to develop the service and draws implications in value that big data create. The related work introduces big data technology in the medical field and cases of eight innovative service in the big data service are explained. In the introduction, the overall structure of the study is mentioned by describing the background and direction of this study. In the literature study, we explain the definition and concept of big data, and the use of big data in the medical industry. Next, this study describes the several cases, such as technologies using national health information and personal genetic information for the study of diseases, personal health services using personal biometric information, use of medical data for efficiency of business processes, and medical big data for the development of new medicines. In the conclusion, we intend to provide direction for the academic and business implications of this study, as well as how the results of the study can help the domestic medical industry.