• Title/Summary/Keyword: Big Data Trend Analysis

Search Result 333, Processing Time 0.031 seconds

주경로 분석과 연관어 네트워크 분석을 통한 '구전(WoM)' 관련 연구동향 분석 (Analysis of Research Trends of 'Word of Mouth (WoM)' through Main Path and Word Co-occurrence Network)

  • 신현보;김혜진
    • 지능정보연구
    • /
    • 제25권3호
    • /
    • pp.179-200
    • /
    • 2019
  • 구전(Word-of-Mouth) 활동은 오래 전부터 기업의 마케팅 과정에서 중요성을 인식하고 특히 마케팅 분야에서 많은 주목을 받아왔다. 최근에는 인터넷의 발달에 따라 온라인 뉴스, 온라인 커뮤니티 등에서 사람들이 지식과 정보를 주고 받는 방식이 다양해지면서 구전은 후기, 평점, 좋아요 등으로 입소문의 양상이 다각화되고 있다. 이러한 현상에 따라 구전에 관한 다양한 연구들이 선행되어왔으나, 이들을 종합적으로 분석한 메타 분석 연구는 부재하다. 본 연구는 학술 빅데이터를 활용해 구전 관련 연구동향을 알아내기 위해서 텍스트 마이닝 기법을 적용하여 주요 연구들을 추출하고 시기별로 연구들의 주요 쟁점을 파악하는 기법을 제안하였다. 이를 위해서 1941년부터 2018년까지 인용 데이터베이스인 Scopus에서 'Word-of-Mouth'라는 키워드로 검색되는 총 4389건의 문헌을 수집하였고, 영어 형태소 분석과 불용어 제거 등 전처리 과정을 통해 데이터를 정제하였다. 본 연구는 학문 분야의 발전 궤적을 추적하는 데 활용되는 주경로 분석기법을 적용해 구전과 관련된 핵심 연구들을 추출하여 연구동향을 거시적 관점에서 제시하였고, 단어동시출현 정보를 추출하여 키워드 간 네트워크를 구축하여 시기별로 구전과 관련된 연관어들이 어떻게 변화되었는지 살펴봄으로써 연구동향을 미시적 관점에서 제시하였다. 수집된 문헌 데이터를 기반으로 인용 네트워크를 구축하고 SPC 가중치를 적용하여 키루트 주경로를 추출한 결과 30개의 문헌으로 구성된 주경로가 추출되었고, 연관어 네트워크 분석을 통해서는 시기별로 온라인 시대, 관광 산업 등 다양한 산업군 등 산업 변화가 반영돼 시대적 변화와 더불어 발전하고 있는 학술적 영역의 변화를 확인할 수 있었다.

네이버 스마트스토어에 대한 빅데이터 분석 및 소상공인 온라인쇼핑몰 지속성장 방안 제안 (Big data analysis on NAVER Smart Store and Proposal for Sustainable Growth Plan for Small Business Online Shopping Mall)

  • 장현문;김선주;김채운;서지일;이경호
    • 한국빅데이터학회지
    • /
    • 제7권2호
    • /
    • pp.153-172
    • /
    • 2022
  • 온라인 쇼핑은 디지털전환(Digital transformation) 수요 및 COVID-19 대유행에 따른 사회적 거리두기 이슈 등에 해결책으로 도소매 서비스 분야의 선두에서 전체 시장을 변화시키고 빠르게 성장해왔다. 온라인 쇼핑 산업의 중심에서 다수를 이루고 있는 소상공인도 이러한 문제를 극복하고 지속적인 성장을 위하여, 정책의 변화 및 시장 동향 정보를 수집하여 마케팅 등 영업 활동에 활용하고 있으나, 한정된 자원과 경쟁 여건에서 본연의 사업에 더욱 밀착된 객관적이고 정제된 정보를 또한 필요로 하고 있다. 이에 본 논문에서는 디지털 전환의 핵심 기술인 빅데이터 정보 수집 및 분석을 통하여 대표적인 온라인 쇼핑몰인 네이버 스마트스토어의 상품 분류, 판매 동향, 소비자 선호도 및 리뷰 정보에서 핵심 변수를 선정하여, 등급별 영향도 및 경쟁자 비교 분석 및 온라인 쇼핑몰 사업 지속성 평가에 활용하는 방안을 마련하여 제안하고자 한다. 빅데이터 기반으로 소상공인이 경쟁자 또는 우수사업자를 벤치마킹하고, 시장의 트렌드 및 소비자 성향을 확인할 수 있다면, 본인의 영업 수준 및 위치를 명확하게 인식하고, 더욱 높은 경쟁력을 확보하기 위하여 자발적으로 노력할 것이다. 아울러 온라인 쇼핑몰 사업자의 지속 가능한 성장을 지표로 확인할 수 있다면, 한 단계 향상된 측정 방안을 보유하게 되므로 더욱 효율적인 정책의 수립 및 리스크관리를 기대할 수 있을 것이다.

SNS 빅데이터 및 검색포털 트렌드와 마약류 사건 통계간의 비교 및 의미분석 연구 (A Study on the Comparison and Semantic Analysis between SNS Big Data, Search Portal Trends and Drug Case Statistics)

  • 최은정;이수련;권혜민;김명주;이인수;이승훈
    • 디지털융복합연구
    • /
    • 제19권2호
    • /
    • pp.231-238
    • /
    • 2021
  • SNS는 데이터를 통해 사용자의 생각이나 행동을 파악할 수 있고 검색포털의 트렌드는 사용자들의 관심사와 그 변화를 파악할 수 있는 대표적인 서비스이다. 본 논문에서는 SNS의 트윗과 검색포털 트렌드에 마약류관련 단어 노출정도와 마약류 사건 통계와의 비교분석을 수행하여 관계를 분석하였다. SNS와 검색 포털 트렌드의 추이가 일정한 시차를 두고 검찰청 통계에도 동일하게 나타난 것을 확인할 수 있었다. 또한 마약류관련 단어들이 언급된 트윗들에 대한 의미를 파악하기 위해 군집분석을 수행하였다. 2020년 10월에 수집된 5만건 트윗에서는 실제 마약류의 판매에 관련된 의미를 찾을 수 있었다. 이를 통해 SNS모니터링만으로도 마약류관련 사건에 대한 모니터링이 가능하고 구체적 판매 또는 구매관련한 정보를 찾을 수 있고 수사과정에 활용할 수 있다. 추후에는 텍스트뿐 아니라 이미지로 나타나는 관련 범죄사항을 파악할 수 있고 범죄모니터링 및 예측시스템을 제안할 수 있다.

Optimization of a composite beam for high-speed railroads

  • Poliakov, Vladimir Y.;Saurin, Vasyli V.
    • Steel and Composite Structures
    • /
    • 제37권4호
    • /
    • pp.493-501
    • /
    • 2020
  • The paper describes an optimization method based on the mathematical model of interaction within multibody 'bridge-track-cars" dynamic system. The interaction is connected with considerable dynamic phenomena influenced by high traffic speed (up to 400 km/h) on high-speed railroads. The trend analysis of a structure is necessary to determine the direction and resource of optimizing the system. Thus, scientific methods of decision-making process are necessary. The process requires a great amount of information analysis dealing with behavior and changes of the "bridge-track-cars system" that consists of mechanisms and structures, including transitions. The paper shows the algorithm of multi-criteria optimization that can essentially reduce weight of a bridge superstructure using big data analysis. This reduction is carried out in accordance with the constraints that have to be satisfied in any case. Optimization of real steel-concrete beam is exemplified. It demonstrates possibility of measures that are offered by the algorithm.

빅데이터 분석을 통해 본 한국 위키피디아의 지식형성 과정에 관한 연구 (A Study on the Knowledge Formation Process of Wikipedia in Korea through Big Data Analysis)

  • 이정연;전수현
    • 정보관리학회지
    • /
    • 제37권2호
    • /
    • pp.171-195
    • /
    • 2020
  • 본 연구는 대표적인 온라인 협업커뮤니티인 한국 위키피디아의 초기 2002년부터 2019년까지의 편집로그 빅데이터를 해체하여 공동협업과정을 시계열적으로 분석하였다. 공개된 오픈데이터의 표준화된 XML 문서편집 기록을 활용해 Phython과 R을 이용하여 분석 요소를 추출하여 이를 활용하였다. 연구 분석 결과 한국 위키피디아 편집자의 참여 방법, 데이터 내용의 특징, 문서 생성의 추이 등을 설명할 수 있었다. 소수 편집자들의 적극적 활동과 대다수 편집자들의 느슨한 참여도 밝혀졌으며, 온라인에서도 나타나는 사회 문화적 특징이 한국 위키피디아에서도 나타났다. 집단지성을 지속화시키기 위해서는 새롭고 다양한 외부자원이 필수인데 신규 진입자들이 공동편집 커뮤니티에 안착하기 위한 다각적인 고려가 필요하며, 관리자 그룹의 고착화를 탈피하여 순환구조를 통한 개방성이 필요함을 제언하였다.

전세계의 지진 연구의 추세 분석 (Trend Analysis of Earthquake Researches in the World)

  • 윤설민;함세영;전항탁;정재열
    • 한국지구과학회지
    • /
    • 제42권1호
    • /
    • pp.76-87
    • /
    • 2021
  • 본 연구에서는 2001년부터 2020년까지 지진과 관련된 지하수위, 수질, 라돈, 원격탐사, 전기비저항, 중력, 지자기 분야의 세계적으로 학술지에 게재된 논문 편수를 Web of Science에서 검색하여 그 경향성을 분석하였다. 그리고 논문 편수와 Mw 5.0 이상, Mw 6.0 이상, Mw 7.0 이상, Mw 8.0 이상, Mw 9.0 이상 지진 발생 건수를 비교 분석하였다. 지진과 관련한 중력, 라돈, 지하수(지하수위, 수질), 전기비저항, 지자기분야 논문 편수는 장기적으로 증가하는 추세를 보인다. 이는 원격탐사 기술의 발달, 측정 장비의 고도화, 빅데이터 분석 등을 통한 종합적인 자료 해석이 가능해지면서 여러 분야에서 지진 전조 및 지진 현상 연구가 활발해지고 있기 때문이다. Mann-Kendall과 Sen 추세 검정에 의하면, 중력 관련 논문의 경우 1.30편/년의 증가추세를 보이고, 라돈 0.60편/년, 지하수 0.70편/년, 전기비저항 0.25편/년, 원격탐사 0.67편/년의 증가추세를 보인다. Mw 5.0 이상, Mw 6.0 이상, Mw 7.0 이상, Mw 8.0 이상, Mw 9.0 이상의 지진발생 건수와 경향성을 제거한 분야별 논문 편수 간의 교차상관분석에 의하면, 라돈과 원격탐사 분야의 교차상관성이 높으며, 지연시간은 1년이다. 또한 2004년과 2005년 수마트라 지진, 2008년 쓰촨성 지진, 2010년 아이티 지진, 2010 칠레 지진 등의 큰 규모의 지진 발생이 논문 편수 증가와 관련되는 것으로 추정된다.

도서 대출데이터를 활용한 남녀 노령자의 독서 주제 분석 (Analysis of Reading Domian of Men and Women Elderly Using Book Lending Data)

  • 조재인
    • 한국도서관정보학회지
    • /
    • 제50권1호
    • /
    • pp.23-41
    • /
    • 2019
  • 본 연구는 도서의 대출정보를 활용해 가중네트워크(PFNET :PathFinder Network) 분석을 수행함으로써 특수 계층으로서 남녀 노령자에 의해 자주 읽히는 도서의 주제와 특성을 이해하고 이들의 독서 양태가 일반 성인 남녀와 어떠한 차이를 보이는지 확인하였다. 이를 위해 남녀 노령자와 일반 성인 남녀로 구성된 4개 집단을 대상으로 도서관 빅데이터의 인기 대출도서를 기반으로 동시대출도서 행렬을 산출하고 이를 활용해 네트워크 분석을 수행하였다. 또한 PNNC(Parallel Nearest Neighbor Clustering) 알고리즘으로 대출도서 군집을 형성한 후 대출도서에 계산된 중심성지수를 기반으로 피어슨 상관분석(Pearson Correlation Analysis)을 수행해 집단간의 상관성을 파악하였다. 그 결과 자기계발, 재태크, 육아 등 다양한 분야의 도서를 대출하는 일반 성인 남녀에 비해 노령자 계층은 한국현대소설에 집중된 독서 활동을 하는 것으로 나타났으며, 특정 인기 저자의 저작에 집중된 도서 대출 경향을 보였다. 한편 여성 노령자가 일본소설, 영미소설을 포함해 상대적으로 다양한 분야를 대출하는 반면 남성 노령자는 극단적으로 한국대하소설에 집중하는 경향을 나타냈다. 상관분석에서도 남성 노령자는 성인 남성과 r=-0.222의 약한 음의 상관성을 보였으며, 다른 모든 집단과도 음의 방향성을 보여 대출 도서의 중심성이 반대 경향을 가지는 것으로 분석되었다.

빅데이터 기반 실시간 불량품 발생 원인 분석 및 설비 교체주기 예측 (Analysis of Defective Causes in Real Time and Prediction of Facility Replacement Cycle based on Big Data)

  • 황승연;곽경민;신동진;곽광진;노영주;박경원;박정민;김정준
    • 한국인터넷방송통신학회논문지
    • /
    • 제19권6호
    • /
    • pp.203-212
    • /
    • 2019
  • 최근 4차 산업혁명과 함께 세계 제조 강국들은 침체된 제조업의 부흥을 위해 국가적 전략을 추진하고 있다. 이러한 추세에 따라 문재인 정부도 '과학기술 발전이 선도하는 4차 산업혁명'이라는 전략을 제시하였다. 4차 산업혁명을 이끄는 핵심기술인 IoT, Cloud, Big data, Mobile, AI 등의 지능정보기술은 로봇, 3D 프린팅 등과 같은 신산업의 등장과 기존 주요 제조업의 스마트화를 촉진하고 있다. 스마트공장과 같은 기술이 발전함에 따라 IoT 기반의 센싱 기술이 발전하면서 이전에는 수집할 수 없었던 다양한 데이터를 측정할 수 있게 되었고, 각 공정에서 생성되는 데이터도 폭발적으로 증가했다. 따라서 본 논문에서는 데이터 생성기를 활용하여 스마트공장에서 발생할 수 있는 가상 데이터를 생성하고, 이를 활용하여 실시간으로 불량품의 발생 원인을 분석하고 설비의 교체주기를 예측하는 방법을 설명한다.

뉴스 빅데이터를 활용한 코로나 19시기의 원격 교육 동향 분석 (Analysis of remote learning trends in the COVID-19 period using news big data)

  • 이영호;구덕회
    • 한국정보교육학회:학술대회논문집
    • /
    • 한국정보교육학회 2021년도 학술논문집
    • /
    • pp.193-197
    • /
    • 2021
  • COVID-19로 인한 팬데믹 상황은 우리 사회의 사회적, 경제적, 심리적, 그리고 다른 모든 면에서 크고 작은 영향을 미치고 있다. 코로나 19 전파를 막기 위해 우리나라를 포함한 다양한 국가에서는 장기간의 가정 돌봄 및 원격 학습 체제에 들어갔다. 하지만 많은 나라에서 진행된 원격 학습 실험은 대면 교육을 원격 학습으로 대체할 수 있는지에 대한 문제가 제기되었다. 이에 본 연구에서는 원격 수업에 대한 언론 보도 내용을 바탕으로 여론, 사회 인식, 현장의 동향을 분석하였다. 이를 위해 본 연구에서는 원격 수업과 관련된 11개의 신문사 및 4개의 방송사의 기사, 2,600개를 수집하였다. 이 데이터를 바탕으로 키워드 트렌드 분석, 토픽모델링 분석, 감정 분석을 실시하였다.

  • PDF

주성분 분석 기법을 활용한 시계열 데이터 분석 및 예측 시스템 (Time Series Data Analysis and Prediction System Using PCA)

  • 진영훈;지세현;한군희
    • 한국융합학회논문지
    • /
    • 제12권11호
    • /
    • pp.99-107
    • /
    • 2021
  • 우리는 무수히 많은 데이터 속에서 살고 있다. 다양한 데이터는 우리가 활동하는 모든 상황 속에서 만들어지는데 빅데이터 기술을 통해 데이터의 유의미를 발굴한다. 유의미한 데이터를 발굴하기 위해 많은 노력이 진행 중이다. 본 논문은 주성분 분석(Principal component analysis) 기법으로 시계열 데이터의 추이 및 예측을 통해 인간이 더 나은 선택을 가능케 하는 분석 기법을 소개한다. 주성분 분석은 입력된 데이터를 통해 공분산을 구성하고, 데이터의 방향성을 추론할 수 있는 고유벡터와 고윳값을 제시한다. 제안하는 방법은 비슷한 방향성을 갖는 시계열 데이터 집합에서 기준 축을 구성하고, 데이터 집합을 이루는 각 시계열 데이터들의 방향성이 기준 축과 이루는 사잇각을 통해 다음 구간에 존재하게 될 데이터의 방향성을 예측한다. 본 논문에서는 가상화폐의 추이를 통해 제시한 알고리즘의 정확도를 LSTM(Long Short-Term Memory)과 비교 검증한다. 비교/검증 결과 제안된 방법은 변동성이 큰 데이터에서 LSTM에 비해 상대적으로 적은 트랜잭션과 높은 수익(112%)을 기록하였다. 이는 상대적으로 정확하게 신호를 분석하여 예측했다는 의미로 볼 수 있으며, 보다 정확한 임계치 설정을 통해 더 나은 결과를 도출할 수 있을 것으로 기대된다.