• Title/Summary/Keyword: Big Data Strategy

Search Result 416, Processing Time 0.027 seconds

Deep Learning City: A Big Data Analytics Framework for Smart Cities (딥러닝 시티: 스마트 시티의 빅데이터 분석 프레임워크 제안)

  • Kim, Hwa-Jong
    • Informatization Policy
    • /
    • v.24 no.4
    • /
    • pp.79-92
    • /
    • 2017
  • As city functions develop more complex and advanced, interests in smart cities are also increasing. Smart cities refer to the cities effectively solving urban problems such as traffic, safety, welfare, and living issues by utilizing ICT. Recently, many countries are attempting to introduce big data, Internet of Things, and artificial intelligence into smart cities, but they have not yet developed into comprehensive urban services. In this paper, we review the current status of domestic and overseas smart cities and suggest ways to solve issues of data sharing and service compatibility. To this end, we propose a "Deep Learning City Framework" that incorporates the deep learning technology into smart city services, and propose a new smart city strategy that safely shares spatial and temporal data in cities and converges learning data of various cities.

An Empirical Study on the Influencing Factors for Big Data Intented Adoption: Focusing on the Strategic Value Recognition and TOE Framework (빅데이터 도입의도에 미치는 영향요인에 관한 연구: 전략적 가치인식과 TOE(Technology Organizational Environment) Framework을 중심으로)

  • Ka, Hoi-Kwang;Kim, Jin-soo
    • Asia pacific journal of information systems
    • /
    • v.24 no.4
    • /
    • pp.443-472
    • /
    • 2014
  • To survive in the global competitive environment, enterprise should be able to solve various problems and find the optimal solution effectively. The big-data is being perceived as a tool for solving enterprise problems effectively and improve competitiveness with its' various problem solving and advanced predictive capabilities. Due to its remarkable performance, the implementation of big data systems has been increased through many enterprises around the world. Currently the big-data is called the 'crude oil' of the 21st century and is expected to provide competitive superiority. The reason why the big data is in the limelight is because while the conventional IT technology has been falling behind much in its possibility level, the big data has gone beyond the technological possibility and has the advantage of being utilized to create new values such as business optimization and new business creation through analysis of big data. Since the big data has been introduced too hastily without considering the strategic value deduction and achievement obtained through the big data, however, there are difficulties in the strategic value deduction and data utilization that can be gained through big data. According to the survey result of 1,800 IT professionals from 18 countries world wide, the percentage of the corporation where the big data is being utilized well was only 28%, and many of them responded that they are having difficulties in strategic value deduction and operation through big data. The strategic value should be deducted and environment phases like corporate internal and external related regulations and systems should be considered in order to introduce big data, but these factors were not well being reflected. The cause of the failure turned out to be that the big data was introduced by way of the IT trend and surrounding environment, but it was introduced hastily in the situation where the introduction condition was not well arranged. The strategic value which can be obtained through big data should be clearly comprehended and systematic environment analysis is very important about applicability in order to introduce successful big data, but since the corporations are considering only partial achievements and technological phases that can be obtained through big data, the successful introduction is not being made. Previous study shows that most of big data researches are focused on big data concept, cases, and practical suggestions without empirical study. The purpose of this study is provide the theoretically and practically useful implementation framework and strategies of big data systems with conducting comprehensive literature review, finding influencing factors for successful big data systems implementation, and analysing empirical models. To do this, the elements which can affect the introduction intention of big data were deducted by reviewing the information system's successful factors, strategic value perception factors, considering factors for the information system introduction environment and big data related literature in order to comprehend the effect factors when the corporations introduce big data and structured questionnaire was developed. After that, the questionnaire and the statistical analysis were performed with the people in charge of the big data inside the corporations as objects. According to the statistical analysis, it was shown that the strategic value perception factor and the inside-industry environmental factors affected positively the introduction intention of big data. The theoretical, practical and political implications deducted from the study result is as follows. The frist theoretical implication is that this study has proposed theoretically effect factors which affect the introduction intention of big data by reviewing the strategic value perception and environmental factors and big data related precedent studies and proposed the variables and measurement items which were analyzed empirically and verified. This study has meaning in that it has measured the influence of each variable on the introduction intention by verifying the relationship between the independent variables and the dependent variables through structural equation model. Second, this study has defined the independent variable(strategic value perception, environment), dependent variable(introduction intention) and regulatory variable(type of business and corporate size) about big data introduction intention and has arranged theoretical base in studying big data related field empirically afterwards by developing measurement items which has obtained credibility and validity. Third, by verifying the strategic value perception factors and the significance about environmental factors proposed in the conventional precedent studies, this study will be able to give aid to the afterwards empirical study about effect factors on big data introduction. The operational implications are as follows. First, this study has arranged the empirical study base about big data field by investigating the cause and effect relationship about the influence of the strategic value perception factor and environmental factor on the introduction intention and proposing the measurement items which has obtained the justice, credibility and validity etc. Second, this study has proposed the study result that the strategic value perception factor affects positively the big data introduction intention and it has meaning in that the importance of the strategic value perception has been presented. Third, the study has proposed that the corporation which introduces big data should consider the big data introduction through precise analysis about industry's internal environment. Fourth, this study has proposed the point that the size and type of business of the corresponding corporation should be considered in introducing the big data by presenting the difference of the effect factors of big data introduction depending on the size and type of business of the corporation. The political implications are as follows. First, variety of utilization of big data is needed. The strategic value that big data has can be accessed in various ways in the product, service field, productivity field, decision making field etc and can be utilized in all the business fields based on that, but the parts that main domestic corporations are considering are limited to some parts of the products and service fields. Accordingly, in introducing big data, reviewing the phase about utilization in detail and design the big data system in a form which can maximize the utilization rate will be necessary. Second, the study is proposing the burden of the cost of the system introduction, difficulty in utilization in the system and lack of credibility in the supply corporations etc in the big data introduction phase by corporations. Since the world IT corporations are predominating the big data market, the big data introduction of domestic corporations can not but to be dependent on the foreign corporations. When considering that fact, that our country does not have global IT corporations even though it is world powerful IT country, the big data can be thought to be the chance to rear world level corporations. Accordingly, the government shall need to rear star corporations through active political support. Third, the corporations' internal and external professional manpower for the big data introduction and operation lacks. Big data is a system where how valuable data can be deducted utilizing data is more important than the system construction itself. For this, talent who are equipped with academic knowledge and experience in various fields like IT, statistics, strategy and management etc and manpower training should be implemented through systematic education for these talents. This study has arranged theoretical base for empirical studies about big data related fields by comprehending the main variables which affect the big data introduction intention and verifying them and is expected to be able to propose useful guidelines for the corporations and policy developers who are considering big data implementationby analyzing empirically that theoretical base.

A Study on the Development of University Students Dropout Prediction Model Using Ensemble Technique (앙상블 기법을 활용한 대학생 중도탈락 예측 모형 개발)

  • Park, Sangsung
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.17 no.1
    • /
    • pp.109-115
    • /
    • 2021
  • The number of freshmen at universities is decreasing due to the recent decline in the school-age population, and the survival of many universities is threatened. To overcome this situation, universities are seeking ways to use big data within the school to improve the quality of education. A study on the prediction of dropout students is a representative case of using big data in universities. The dropout prediction can prepare a systematic management plan by identifying students who will drop out of school due to reasons such as dropout or expulsion. In the case of actual on-campus data, a large number of missing values are included because it is collected and managed by various departments. For this reason, it is necessary to construct a model by effectively reflecting the missing values. In this study, we propose a university student dropout prediction model based on eXtreme Gradient Boost that can be applied to data with many missing values and shows high performance. In order to examine the practical applicability of the proposed model, an experiment was performed using data from C University in Chungbuk. As a result of the experiment, the prediction performance of the proposed model was found to be excellent. The management strategy of dropout students can be established through the prediction results of the model proposed in this paper.

A Study on the User Demand Forecasting and Improvement Plan of Gimpo City Library Service

  • Noh, Younghee;Chang, Inho;Kang, Ji Hei;Chang, Rosa
    • International Journal of Knowledge Content Development & Technology
    • /
    • v.10 no.4
    • /
    • pp.7-27
    • /
    • 2020
  • With accommodation of a population of many young people and families due to Hangang River New Town Housing Project and development of railway station spheres, a need is increasing to improve the quality of public libraries service for Gimpo citizens and to establish more libraries. This study thus analyzed the book lending data of Gimpo City libraries, and the city's libraries-related social media big data in an effort to forecast the users, and thus to propose four library service improvement measures. First, in terms of book gathering and book development policy plans, a proposal was made to expand good books for children and youth, and to expand general original-language books related to learning of English, and English books for children. Second, in terms of the establishment of additional libraries or specialization strategy, a proposal was made to establish exclusive children's libraries or English libraries, and to establish library specialization strategy with a focus on children and English themes. Third, in terms of library culture programs, a proposal was made to provide library culture programs in relation to children education and to expand weekend library culture programs. Fourth, in terms of library facilities, considering the convenience of parking facilities, a proposal was made to establish libraries near apartment complexes.

Global Pricing Strategy of the SPA Brand: Comparison with GDP and Big Mac Index (SPA 브랜드의 글로벌 가격 전략: 국민소득 및 빅맥지수와의 비교)

  • Kim, Seo Jeong;Lee, Ji Yeon;Lee, Kyu-Hye
    • Fashion & Textile Research Journal
    • /
    • v.18 no.3
    • /
    • pp.301-316
    • /
    • 2016
  • Due to the dramatic increase in consumers' price sensitivity and growing importance for global retailers to create relevant price strategies, this study investigates the global pricing strategy of the main SPA brands such as ZARA, H&M and UNIQLO. Based on price information shown on official website, the study developed SPA brand index by using exchange rates in terms of US dollars and ratio of differences between the local price and the US price. These figures were compared with GDP per person data in order to analyze each brand's price level against the income level. The study also compared SPA brand index with Big Mac index to identify the difference in price levels between the fast fashion market and the fast food market. ZARA and H&M were mostly targeting Middle East and Asia as a high-price market when considering index only. After taking the income level into account, however, Asia came out be the highest price market and Middle East was similar to the US market. On the other hand, UNIQLO targeted Asia as the lowest price market and the US and EU as the highest in terms of index only. But, Asia came out to be the highest price zone after considering the income level while the price of the US and EU was reasonable. Comparison with Big Mac Index indicated that most of Asia had a higher price level of the fashion market than the food market, whereas most European countries had a similar or high-price level of food market.

Mathematics Anxiety Analysis using Topological Data Analysis (위상수학적 데이터 분석법을 이용한 수학학습 불안 분석 사례)

  • Ko, Ho Kyoung;Park, Seonjeong
    • East Asian mathematical journal
    • /
    • v.34 no.2
    • /
    • pp.177-189
    • /
    • 2018
  • Recently, Topological Data Analysis (TDA) has attracted attention among various techniques for analyzing big data. Mapper algorithm, which is one of TDA techniques, is used to visualize the cluster diagram. In this study, students were clustered according to the characteristics and degree of mathematics anxiety using a mapper, and students were visualized according to mathematics anxiety. In order to do this, Mathematical Anxiety Scale (Ko & Yi, 2011) in the aspect of mathematical instability in terms of teaching - learning, ie, Nature of Mathematics, Learning Strategy, Test/Performance is used. And the number of questions that measure the anxiety of mathematics can be extracted by extracting the most relevant items among the items that measure the anxiety of mathematics.

Idea proposal of InfograaS for Visualization of Public Big-data (공공 빅데이터의 시각화를 위한 InfograaS의 아이디어 제안)

  • Cha, Byung-Rae;Lee, Hyung-Ho;Sim, Su-Jeong;Kim, Jong-Won
    • Journal of Advanced Navigation Technology
    • /
    • v.18 no.5
    • /
    • pp.524-531
    • /
    • 2014
  • In this paper, we have proposed the processing and analyzing the linked open data (LOD), a kind of big-data, using resources of cloud computing. The LOD is web-based open data in order to share and recycle of public data. Specially, we defined the InfograaS (Info-graphic as a service), new business area of SaaS (software as a service), to support visualization technique for BA (business analytics) and Info-graphic. The goal of this study is easily to use it by the non-specialist and beginner without experts of visualization and business analysis. Data visualization is the process to represent visually and understand the data analysis easily. The purpose of data visualization is to deliver information clearly and effectively by chart and figure. The big data of public data are shared and presented in the charts and the graphics understood easily by various processing results using Hadoop, R, machine learning, and data mining of open source and resources of cloud computing.

Limitations and Improvement of Using a Costliness Index (진료비 고가도 지표의 한계와 개선 방향)

  • Jang, Ho Yeon;Kang, Min Seok;Jeong, Seo Hyun;Lee, Sang Ah;Kang, Gil Won
    • Health Policy and Management
    • /
    • v.32 no.2
    • /
    • pp.154-163
    • /
    • 2022
  • Background: The costliness index (CI) is an index that is used in various ways to improve the quality of medical care and the management of appropriate treatment in medical institutions. However, the current calculation method for CI has a limitation in reflecting the actual medical cost of the patient unit because the outpatient and inpatient costs are evaluated separately. It is desirable to calculate the CI by integrating the medical cost into the episode unit. Methods: We developed an episode-based CI method using the episode classification system of the Centers for Medicare and Medicaid Services to the National Inpatient Sample data in Korea, which can integrate the admission and ambulatory care cost to episode unit. Additionally, we compared our new method with the previous method. Results: In some episodes, the correlation between previous and episode-based CI was low, and the proportion of outpatient treatment costs in total cost and readmission rates are high. As a result of regression analysis, it is possible that the level of total medical costs of the patient unit in low volume medical institute and rural area has been underestimated. Conclusion: High proportion of outpatient treatment cost in total medical cost means that some medical institutions may have provided medical services in the ambulatory care that are ancillary to inpatient treatment. In addition, a high readmission rate indicates insufficient treatment service for inpatients, which means that previous CI may not accurately reflect actual patient-based treatment costs. Therefore, an integrated patient-unit classification system which can be used as a more effective CI indicator is needed.

Development and Application of Effect Measurement Tool for Victory Factors in Offensive Operations Using Big Data Analytics (빅데이터를 통한 공격작전 승리요인 효과측정도구 개발 및 분석 : KCTC 훈련사례를 중심으로)

  • Kim, Gak-Gyu;Kim, Dae-Sung
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.39 no.2
    • /
    • pp.111-130
    • /
    • 2014
  • For the key factors determining victory of combat, many works have been focusing on qualitative analyses in the past. As military training paradigm changes along with technology developments, demands for scientific analysis to prepare future military strength increase regarding military training results, and big data analysis has opened such possibility. We analyze the data from KCTC (Korea Combat Training Center) training to investigate the factors affected victory in offensive operations. In this context, we develop a way to measure the victory and the factors related to it from existing studies and military doctrines. We first identify Independent variables that affect offensive operations through variable selection and propose a mathematical model to explain combat victory by performing multiple regression analysis. We also verify our results with battalion-level live training data as well as previous studies on victory factors in the military doctrines.

Analysis of Outdoor Wear Consumer Characteristics and Leading Outdoor Wear Brands Using SNS Social Big Data (SNS 소셜 빅데이터를 통한 아웃도어 의류 소비자 특성과 주요 아웃도어 의류 브랜드 현황 분석)

  • Jung, Hye Jung;Oh, Kyung Wha
    • Fashion & Textile Research Journal
    • /
    • v.18 no.1
    • /
    • pp.48-62
    • /
    • 2016
  • Consumers have come to demand high quality, affordable prices, and innovative product designs of the outdoor wear market due to their well-being and leisure oriented lifestyle. A new system of business in outdoor wear has emerged in the process through which corporations have endeavored to satisfy such consumer needs. Outdoor wear brands have utilized social network services (SNS) such as Facebook and Twitter as means of marketing and have built close relations with consumers based on communication through these media. Recently, explosively escalating SNS data are referred to as social big data, and now that every consumer online is a commentator, reviewer, and publisher, the outdoor wear market and all of its brands have to stop talking and start listening to how they are perceived. Therefore, this study employs Social $Metrics^{TM}$, a social big data analysis solution by Daumsoft, Inc., to verify changes in the allusions related to outdoor wear market found on SNS. This study aims to identify changes in consumer perceptions of outdoor wear based on changes in outdoor wear search words and trends in positive and negative public opinion found in SNS social big data. In addition, products of interest, the major brands mentioned, the attributes taken into consideration during purchases of products, and consumers' psychology were categorized and analyzed by means of keywords related to outdoor wear brands found on SNS. The results of this study will provide fundamental resources for outdoor wear brands' market entry and brand strategy implementation in the future.