• Title/Summary/Keyword: Big Data Environment

Search Result 976, Processing Time 0.025 seconds

Trend Analysis of Dance Performance Research Using Keywords and Topic Modeling of LDA Techniques (LDA 토픽 모델링 기법을 활용한 무용공연의 연구 동향 분석)

  • SI YU
    • Journal of Industrial Convergence
    • /
    • v.22 no.3
    • /
    • pp.13-25
    • /
    • 2024
  • This study explores research topics related to dance performances published in Korea based on big data and examines research trends that change according to the trend of the times. The results derived from topic modeling analysis are as follows. (1) Six major topics were derived: a study on marketing strategies and development plans for dance performances, (2) a study on the re-watching factors of dance performance space and performance satisfaction, (3) a study on the popularity and contribution of dance performances in the stage environment, (4) a study on the current status of dance performances and the convergence of dance group operations, (5) a study on the definition of dance performances using various social media, and (6) a study on the direction and development of technology-applied dance performance contents. Accordingly, research trends and topics related to dance, including dance performances, social changes, key keywords of researchers' change interests were extracted, and keywords were compared and analyzed to present academic changes and countermeasures. Accordingly, the need for research to apply new technologies was emphasized as it diversified and fused.

In Silico Analysis and Biochemical Characterization of Streptomyces PET Hydrolase with Bis(2-Hydroxyethyl) Terephthalate Biodegradation Activity

  • Gobinda Thapa;So-Ra Han;Prakash Paudel;Min-Su Kim;Young-Soo Hong;Tae-Jin Oh
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.9
    • /
    • pp.1836-1847
    • /
    • 2024
  • Polyethylene terephthalate (PET), one of the most widely used plastics in the world, causes serious environmental problems. Recently, scientists have been focused on the enzymatic degradation of PET, an environmentally friendly method that offers an attractive approach to the degradation and recycling of PET. In this work, PET hydrolase from Streptomyces sp. W2061 was biochemically characterized, and the biodegradation of PET was performed using the PET model substrate bis (2-hydroxyethyl terephthalate) (BHET). PET hydrolase has an isoelectric point of 5.84, and a molecular mass of about 50.31 kDa. The optimum pH and temperature were 7.0 and 40℃, respectively. LC-MS analysis of the enzymatic products showed that the PET hydrolase successfully degraded a single ester bond of BHET, leading to the formation of MHET. Furthermore, in silico characterization of the PET hydrolase protein sequence and its predicted three-dimensional structure was designed and compared with the well-characterized IsPETase from Ideonella sakaiensis. The structural analysis showed that the (Gly-x1-Ser-x2-Gly) serine hydrolase motif and the catalytic triad (Ser, Asp, and His) were conserved in all sequences. In addition, we integrated molecular dynamics (MD) simulations to analyze the variation in the structural stability of the PET hydrolase in the absence and presence of BHET. These simulations showed the formation of a stable complex between the PET hydrolase and BHET. To the best of our knowledge, this is the first study on Streptomyces sp. W2061 to investigate the BHET degradation activity of PET hydrolase, which has potential application in the biodegradation of plastics in the environment.

Analysis of Success Cases of InsurTech and Digital Insurance Platform Based on Artificial Intelligence Technologies: Focused on Ping An Insurance Group Ltd. in China (인공지능 기술 기반 인슈어테크와 디지털보험플랫폼 성공사례 분석: 중국 평안보험그룹을 중심으로)

  • Lee, JaeWon;Oh, SangJin
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.3
    • /
    • pp.71-90
    • /
    • 2020
  • Recently, the global insurance industry is rapidly developing digital transformation through the use of artificial intelligence technologies such as machine learning, natural language processing, and deep learning. As a result, more and more foreign insurers have achieved the success of artificial intelligence technology-based InsurTech and platform business, and Ping An Insurance Group Ltd., China's largest private company, is leading China's global fourth industrial revolution with remarkable achievements in InsurTech and Digital Platform as a result of its constant innovation, using 'finance and technology' and 'finance and ecosystem' as keywords for companies. In response, this study analyzed the InsurTech and platform business activities of Ping An Insurance Group Ltd. through the ser-M analysis model to provide strategic implications for revitalizing AI technology-based businesses of domestic insurers. The ser-M analysis model has been studied so that the vision and leadership of the CEO, the historical environment of the enterprise, the utilization of various resources, and the unique mechanism relationships can be interpreted in an integrated manner as a frame that can be interpreted in terms of the subject, environment, resource and mechanism. As a result of the case analysis, Ping An Insurance Group Ltd. has achieved cost reduction and customer service development by digitally innovating its entire business area such as sales, underwriting, claims, and loan service by utilizing core artificial intelligence technologies such as facial, voice, and facial expression recognition. In addition, "online data in China" and "the vast offline data and insights accumulated by the company" were combined with new technologies such as artificial intelligence and big data analysis to build a digital platform that integrates financial services and digital service businesses. Ping An Insurance Group Ltd. challenged constant innovation, and as of 2019, sales reached $155 billion, ranking seventh among all companies in the Global 2000 rankings selected by Forbes Magazine. Analyzing the background of the success of Ping An Insurance Group Ltd. from the perspective of ser-M, founder Mammingz quickly captured the development of digital technology, market competition and changes in population structure in the era of the fourth industrial revolution, and established a new vision and displayed an agile leadership of digital technology-focused. Based on the strong leadership led by the founder in response to environmental changes, the company has successfully led InsurTech and Platform Business through innovation of internal resources such as investment in artificial intelligence technology, securing excellent professionals, and strengthening big data capabilities, combining external absorption capabilities, and strategic alliances among various industries. Through this success story analysis of Ping An Insurance Group Ltd., the following implications can be given to domestic insurance companies that are preparing for digital transformation. First, CEOs of domestic companies also need to recognize the paradigm shift in industry due to the change in digital technology and quickly arm themselves with digital technology-oriented leadership to spearhead the digital transformation of enterprises. Second, the Korean government should urgently overhaul related laws and systems to further promote the use of data between different industries and provide drastic support such as deregulation, tax benefits and platform provision to help the domestic insurance industry secure global competitiveness. Third, Korean companies also need to make bolder investments in the development of artificial intelligence technology so that systematic securing of internal and external data, training of technical personnel, and patent applications can be expanded, and digital platforms should be quickly established so that diverse customer experiences can be integrated through learned artificial intelligence technology. Finally, since there may be limitations to generalization through a single case of an overseas insurance company, I hope that in the future, more extensive research will be conducted on various management strategies related to artificial intelligence technology by analyzing cases of multiple industries or multiple companies or conducting empirical research.

Smart farm development strategy suitable for domestic situation -Focusing on ICT technical characteristics for the development of the industry6.0- (국내 실정에 적합한 스마트팜 개발 전략 -6차산업의 발전을 위한 ICT 기술적 특성을 중심으로-)

  • Han, Sang-Ho;Joo, Hyung-Kun
    • Journal of Digital Convergence
    • /
    • v.20 no.4
    • /
    • pp.147-157
    • /
    • 2022
  • This study tried to propose a smart farm technology strategy suitable for the domestic situation, focusing on the differentiation suitable for the domestic situation of ICT technology. In the case of advanced countries in the overseas agricultural industry, it was confirmed that they focused on the development of a specific stage that reflected the geographical characteristics of each country, the characteristics of the agricultural industry, and the characteristics of the people's demand. Confirmed that no enemy development is being performed. Therefore, in response to problems such as a rapid decrease in the domestic rural population, aging population, loss of agricultural price competitiveness, increase in fallow land, and decrease in use rate of arable land, this study aims to develop smart farm ICT technology in the future to create quality agricultural products and have price competitiveness. It was suggested that the smart farm should be promoted by paying attention to the excellent performance, ease of use due to the aging of the labor force, and economic feasibility suitable for a small business scale. First, in terms of economic feasibility, the ICT technology is configured by selecting only the functions necessary for the small farm household (primary) business environment, and the smooth communication system with these is applied to the ICT technology to gradually update the functions required by the actual farmhouse. suggested that it may contribute to the reduction. Second, in terms of performance, it is suggested that the operation accuracy can be increased if attention is paid to improving the communication function of ICT, such as adjusting the difficulty of big data suitable for the aging population in Korea, using a language suitable for them, and setting an algorithm that reflects their prediction tendencies. Third, the level of ease of use. Smart farms based on ICT technology for the development of the Industry6.0 (1.0(Agriculture, Forestry) + 2.0(Agricultural and Water & Water Processing) + 3.0 (Service, Rural Experience, SCM)) perform operations according to specific commands, finally suggested that ease of use can be promoted by presetting and standardizing devices based on big data configuration customized for each regional environment.

Ecological Characteristics of Korean Red Pine (Pinus densiflora S. et Z.) Forest on Mt. Nam as a Long Term Ecological Research (LTER) Site (국가장기생태연구 장소로서 구축된 남산 소나무림의 생태적 특성)

  • Lee, Chang-Seok;Cho, Yong-Chan;Shin, Hyun-Cheol;Lee, Choong-Hwa;Lee, Seon-Mi;Seol, Eun-Sil;Oh, Woo-Seok;Park, Sung-Ae
    • Journal of Ecology and Environment
    • /
    • v.29 no.6
    • /
    • pp.593-602
    • /
    • 2006
  • Species composition, spatial distribution of major species, diameter and height classes distribution, and species diversity were .analyzed in the Korean red pine (Pinus densiflora, hereafter referred as pine) forest in the permanent quadrats, which were designed for Long Term Ecological Research (LTER). Collected data were compared with those from the other areas including urban center (Mt. Inwang and Hongneung) and boundary areas (Mts. Acha, Bukhan, Bulam, Cheonggye, Daemo, and Surak), and natural areas (Mts. Seolak, Songni, and Wolak) to clarify the ecological characteristics of pine forest on Mt. Nam. Species composition of pine forest on Mt. Nam showed a similarity with those of urban center but did a little and big differences with those on urban boundary and natural areas, respectively. Such differences that pine forest on Mt. Nam showed, were usually due to Styrax japonicus, Sorbus alnifolia, Oplismenus undulatifolius, Ailanthus altissima, Ageratina altissima and so on, which showed higher coverage there. Predicted from diameter and height classes distribution of tree species, pine forest on Mt. Nam showed a possibility to be replaced by a S. japonica. Considered that this replacer species is not only a sub-tree but also shade intolerant, such successional trend could be interpreted as a sort of retrogressive succession. Those on urban boundary and natural areas showed a difference by displaying probabilities to be maintained as themselves as an edaphic climax or succeeded to oak forests. Species diversity of pine forest on Mt. Nam was lower than those in urban boundary and natural areas due to excessive dominance of several species, which led to different species composition from the other areas. Plants, which produced the differences, were species that flourishes in the polluted industrial area (S. japonica and S. alnifolia), favors the disturbed site (O. undulatifolius), and exotic species (A. altissima and Eupatorium rugosum). Those results reflects that pine forest of Mt. Nam was exposed on severe environmental pollution and excessive human interferences.

A Study on People Counting in Public Metro Service using Hybrid CNN-LSTM Algorithm (Hybrid CNN-LSTM 알고리즘을 활용한 도시철도 내 피플 카운팅 연구)

  • Choi, Ji-Hye;Kim, Min-Seung;Lee, Chan-Ho;Choi, Jung-Hwan;Lee, Jeong-Hee;Sung, Tae-Eung
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.2
    • /
    • pp.131-145
    • /
    • 2020
  • In line with the trend of industrial innovation, IoT technology utilized in a variety of fields is emerging as a key element in creation of new business models and the provision of user-friendly services through the combination of big data. The accumulated data from devices with the Internet-of-Things (IoT) is being used in many ways to build a convenience-based smart system as it can provide customized intelligent systems through user environment and pattern analysis. Recently, it has been applied to innovation in the public domain and has been using it for smart city and smart transportation, such as solving traffic and crime problems using CCTV. In particular, it is necessary to comprehensively consider the easiness of securing real-time service data and the stability of security when planning underground services or establishing movement amount control information system to enhance citizens' or commuters' convenience in circumstances with the congestion of public transportation such as subways, urban railways, etc. However, previous studies that utilize image data have limitations in reducing the performance of object detection under private issue and abnormal conditions. The IoT device-based sensor data used in this study is free from private issue because it does not require identification for individuals, and can be effectively utilized to build intelligent public services for unspecified people. Especially, sensor data stored by the IoT device need not be identified to an individual, and can be effectively utilized for constructing intelligent public services for many and unspecified people as data free form private issue. We utilize the IoT-based infrared sensor devices for an intelligent pedestrian tracking system in metro service which many people use on a daily basis and temperature data measured by sensors are therein transmitted in real time. The experimental environment for collecting data detected in real time from sensors was established for the equally-spaced midpoints of 4×4 upper parts in the ceiling of subway entrances where the actual movement amount of passengers is high, and it measured the temperature change for objects entering and leaving the detection spots. The measured data have gone through a preprocessing in which the reference values for 16 different areas are set and the difference values between the temperatures in 16 distinct areas and their reference values per unit of time are calculated. This corresponds to the methodology that maximizes movement within the detection area. In addition, the size of the data was increased by 10 times in order to more sensitively reflect the difference in temperature by area. For example, if the temperature data collected from the sensor at a given time were 28.5℃, the data analysis was conducted by changing the value to 285. As above, the data collected from sensors have the characteristics of time series data and image data with 4×4 resolution. Reflecting the characteristics of the measured, preprocessed data, we finally propose a hybrid algorithm that combines CNN in superior performance for image classification and LSTM, especially suitable for analyzing time series data, as referred to CNN-LSTM (Convolutional Neural Network-Long Short Term Memory). In the study, the CNN-LSTM algorithm is used to predict the number of passing persons in one of 4×4 detection areas. We verified the validation of the proposed model by taking performance comparison with other artificial intelligence algorithms such as Multi-Layer Perceptron (MLP), Long Short Term Memory (LSTM) and RNN-LSTM (Recurrent Neural Network-Long Short Term Memory). As a result of the experiment, proposed CNN-LSTM hybrid model compared to MLP, LSTM and RNN-LSTM has the best predictive performance. By utilizing the proposed devices and models, it is expected various metro services will be provided with no illegal issue about the personal information such as real-time monitoring of public transport facilities and emergency situation response services on the basis of congestion. However, the data have been collected by selecting one side of the entrances as the subject of analysis, and the data collected for a short period of time have been applied to the prediction. There exists the limitation that the verification of application in other environments needs to be carried out. In the future, it is expected that more reliability will be provided for the proposed model if experimental data is sufficiently collected in various environments or if learning data is further configured by measuring data in other sensors.

Sewer overflow simulation evaluation of urban runoff model according to detailed terrain scale (상세지형스케일에 따른 도시유출모형의 관거월류 모의성능평가)

  • Tak, Yong Hun;Kim, Young Do;Kang, Boosik;Park, Mun Hyun
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.6
    • /
    • pp.519-528
    • /
    • 2016
  • Frequently torrential rain is occurred by climate change and urbanization. Urban is formed with road, residential and underground area. Without detailed topographic flooded analysis consideration can take a result which are wrong flooded depth and flooded area. Especially, flood analysis error of population and assets in dense downtown is causing a big problem for establishments and disaster response of flood measures. It can lead to casualties and property damage. Urban flood analysis is divided into sewer flow analysis and surface inundation analysis. Accuracy is very important point of these analysis. In this study, to confirm the effects of the elevation data precision in the process of flooded analysis were studied using 10m DEM, LiDAR data and 1:1,000 digital map. Study area is Dorim-stream basin in the Darim drainage basin, Sinrim 3 drainage basin, Sinrim 4 drainage basin. Flooding simulation through 2010's heavy rain by using XP-SWMM. Result, from 10m DEM, shows wrong flood depth which is more than 1m. In particular, some of the overflow manhole is not seen occurrence. Accordingly, detailed surface data is very important factor and it should be very careful when using the 10m DEM.

Spatio-Temporal Patterns of a Public Bike Sharing System in Seoul - Focusing on Yeouido District - (서울시 공공자전거 공유시스템(PBSS)의 시공간적 이용 패턴 분석 - 서울시 여의도동을 중심으로 -)

  • Yun, Seung-yong;Min, Kyung-hun;Ko, Ha-jung
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.48 no.1
    • /
    • pp.1-14
    • /
    • 2020
  • Various policies and studies regarding use of PBSS (Public Bike Sharing System) and Programs (PBSP) have been conducted worldwide as the number systems or programs has increased. Although various phenomena and demands have been generated by the use of PBSS in everyday life, the majority of research and the policies in South Korea have been implemented focused on commuting life. The purpose of this study aimed to understand various PBSS demands using PBSS usage data in 2018 in the Yeouido districts through classifying usage patterns and analyzing features. The rental stations were classified into three types based on weekday/weekend usage rates. The usage of Yeouido's PBSS accounted for 4.3% of the total usage in Seoul Metropolitan City, while the number of PBSS rental stations accounted for 2% of all rental stations in the Seoul urban areas. Rental stations with a higher weekday utilization rates showed high utilization rates in all four seasons and were mainly distributed in work and residential areas. Other stations showed a concentrated usage pattern in spring (April-May) and autumn (September-October) seasons, and their locations were close to the entrance of nearby parks. Besides, renting and returning were often concentrated at certain rental stations for high weekend utilization as compared to the pattern of high weekday usage. Therefore, PBSS management and programs should be operated to reflect various usage demands rather than uniform PBSS operations. The result of this study is meaningful to provide basic data for effective PBSS operation by monitoring the demand for PBSS usage in spatio-temporal terms.

An Analysis of the Efficiency of Korean railroad container freight station with Data Envelopment Analysis-Assurance Region (DEA-AR) (DEA-AR을 활용한 철도 컨테이너 화물역 효율성 분석)

  • An, Chi-Won;Ha, Heon-Gu
    • Journal of Korean Society of Transportation
    • /
    • v.27 no.3
    • /
    • pp.7-16
    • /
    • 2009
  • Because the transport policy of Korea has overemphasized road, the physical distribution function of railroad has dwindled a great deal relatively. Recently, the railway has started to be embossed due to the rise of oil prices and environment problems, in addition the government is investing greatly in railroad. The railway corporation took a big step in its history in changing to a public corporation in 2005, and it has been making every possible endeavor to improve management. This research analyzed the trend and stability of the efficiency of railway container handling goods station in korea from 2002 to 2007 based on time of after being changed to a public corporation in 2005 in order to look into the trend of efficiency. The DEA- AR(Data Envelopment Analysis-Assurance Region) and the DEA-Window, widely used as the estimation techniques of the efficiency, were used. According to the results, the efficiency was a little enhanced in 2003 in comparison with 2002, after which it continuously decreased up to 2006 and again rose in 2007. The efficiency of the railway corporation was 0.6777, but after changing to a public corporation, it showed a trend of better efficiency after some transition period had passed.

An Empirical Study on Defense Future Technology in Artificial Intelligence (인공지능 분야 국방 미래기술에 관한 실증연구)

  • Ahn, Jin-Woo;Noh, Sang-Woo;Kim, Tae-Hwan;Yun, Il-Woong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.5
    • /
    • pp.409-416
    • /
    • 2020
  • Artificial intelligence, which is in the spotlight as the core driving force of the 4th industrial revolution, is expanding its scope to various industrial fields such as smart factories and autonomous driving with the development of high-performance hardware, big data, data processing technology, learning methods and algorithms. In the field of defense, as the security environment has changed due to decreasing defense budget, reducing military service resources, and universalizing unmanned combat systems, advanced countries are also conducting technical and policy research to incorporate artificial intelligence into their work by including recognition systems, decision support, simplification of the work processes, and efficient resource utilization. For this reason, the importance of technology-driven planning and investigation is also increasing to discover and research potential defense future technologies. In this study, based on the research data that was collected to derive future defense technologies, we analyzed the characteristic evaluation indicators for future technologies in the field of artificial intelligence and conducted empirical studies. The study results confirmed that in the future technologies of the defense AI field, the applicability of the weapon system and the economic ripple effect will show a significant relationship with the prospect.