• Title/Summary/Keyword: Bifurcation diagram

Search Result 40, Processing Time 0.032 seconds

A Study on the Stability Boundaries for Single Layer Latticed Domes and Arch under Combined Loads (조합하중를 받는 단층 래티스 돔과 아치의 안정경계에 관한 연구)

  • Han, Sang-Eul;Lee, Sang-Ju;Lee, Kap-Su
    • Journal of Korean Association for Spatial Structures
    • /
    • v.4 no.3 s.13
    • /
    • pp.103-109
    • /
    • 2004
  • The lowest load when the equilibrium condition becomes to be unstable is defined as the buckling load. The primary objective of this paper is to be analyse stability boundaries for star dome under combined loads and is to investigate the iteration diagram under the independent loading parameter. In numerical procedure of the geometrically nonlinear problems, Arc Length Method and Newton-Raphson iteration method is used to find accurate critical point(bifurcation point and limit point). In this paper independent loading vector is combined as proportional value and star dome was used as numerical analysis model to find stability boundary among load parameters and many other models as multi-star dome and arch were studied. Through this study we can find the type of buckling mode and the value of buckling load.

  • PDF

Quasi-zero-stiffness Characteristic of a Passive Isolator Using Flexures under Compression Force (압축력이 작용하는 유연보를 이용한 수동 제진기의 준영강성 특성)

  • Kim, Kyoung-Hong;Ahn, Hyeong-Joon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.321-321
    • /
    • 2009
  • This paper presents quasi-zero-stiffness (QZS) characteristic of a passive isolator using flexures under compression force. The passive isolator consists of a positive stiffness element (a vertical coil spring) and a negative stiffness element (flexures under compression force), and their proper combination of the positive and negative stiffness elements can produce both substantial static and zero dynamic stiffness, so called QZS. Firstly, a nonlinear dimensionless expression of a flexure under compression force is derived. A dynamic model of the passive isolator is developed and numerical simulations of its time and frequency response are performed. Then, undesirable nonlinear vibration is quantified using a period doubling bifurcation diagram and a Poincare's map of the isolator under forced excitation. Finally, experiments are performed to validate the QZS characteristic of the passive isolator.

  • PDF

A Study on the Stability Boundaries for Single Layer Latticed Domes under Combined Loads (조합하중을 받는 단층 래티스 돔의 안정경계에 관한 연구)

  • 한상을;이갑수
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.04b
    • /
    • pp.85-91
    • /
    • 2000
  • The smallest value of the load when the equilibrium condition becomes to be unstable is defined as the buckling load. The primary objective of this paper is to analyse stability boundaries for star dome under combined loads and is to investigate the iteration diagram under the independent loading parameter In numerical procedure of the geometrically nonlinear problems, Arc Length Method and Newton-Raphson iteration method is used to find accurate critical point(bifurcation point and limit point). In this paper independent loading vector is combined as proportional value and star dome was used as numerical analysis model to find stability boundary among load parameters and many other models as multi-star dome and arches were studied. Through this study we can find the type of buckling mode and the value of buckling load.

  • PDF

Nonlinear dynamic analysis of SWNTs conveying fluid using nonlocal continuum theory

  • Kordkheili, Seyed Ali Hosseini;Mousavi, Taha;Bahai, Hamid
    • Structural Engineering and Mechanics
    • /
    • v.66 no.5
    • /
    • pp.621-629
    • /
    • 2018
  • By employing the nonlocal continuum field theory of Eringen and Von Karman nonlinear strains, this paper presents an analytical model for linear and nonlinear dynamics analysis of single-walled carbon nanotubes (SWNTs) conveying fluid with different boundary conditions. In the linear analysis the natural frequencies and critical flow velocities of SWNTs are computed. However, in the nonlinear analysis the effect of nonlocal parameter on nonlinear dynamics of cantilevered SWNTs conveying fluid is investigated by using bifurcation diagram, phase plane and Poincare map. Numerical results confirm existence of chaos as well as a period-doubling transition to chaos.

Simulation of a Rotating Chain with an Absolute Nodal Coordinate Formulation (절대절점좌표를 이용한 회전체인의 시뮬레이션)

  • Yoo, Wan-Suk;Dmitrochenko, Oleg;Pogorelov, Dmitry
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.649-654
    • /
    • 2004
  • A physically simple but mathematically cumbrous problem of rotating heavy chain with one fixed top point is studied. Nonlinear equation of its two-dimensional shapes of relative equilibrium is obtained and solved numerically. A linear case of small displacements is analyzed in terms of Bessel functions. The qualitative and quantitative behavior of the problem is discussed with the help of bifurcation diagram. Dynamics of the two-dimensional model near the equilibrium positions is studied with the help of simulation using the absolute nodal coordinate formulation (ANCF). The equilibriums are found instable, and the reason of instability is explained using a variational principle.

  • PDF

ON CONTROLLING A CHAOTIC VEHICLE DYNAMIC SYSTEM BY USING DITHER

  • Chang, S.C.
    • International Journal of Automotive Technology
    • /
    • v.8 no.4
    • /
    • pp.467-476
    • /
    • 2007
  • This work verifies the chaotic motion of a steer-by-wire vehicle dynamic system, and then elucidates an application of dither smoothing to control the chaos of a vehicle model. The largest Lyapunov exponent is estimated from the synchronization to identify periodic and chaotic motions. Then, a bifurcation diagram reveals complex nonlinear behaviors over a range of parameter values. Finally, a method for controlling a chaotic vehicle dynamic system is proposed. This method involves applying another external input, called a dither signal, to the system. The designed controller is demonstrated to work quite well for nonlinear systems in achieving robust stability and protecting the vehicle from slip or spin. Some simulation results are presented to establish the feasibility of the proposed method.

Nonlinear vibration characteristics of a vertical passive zero stiffness isolator (수직방향 수동 영강성 제진기의 비선형 진동 특성)

  • Kim, Kyoung-Hong;Ahn, Hyeong-Joon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1259-1265
    • /
    • 2007
  • This paper presents nonlinear vibration characteristics of a vertical passive zero stiffness isolator. The passive isolator can achieve zero stiffness through buckling of notched flexure caused by a compressive force. First, a simulation model of the isolator was built based on elastic beam theory. As increasing the compression force, time and frequency responses of the isolator were simulated. In addition, further nonlinear vibration characteristics were investigated through a bifurcation diagram and a Poincare's map, which shows that even chaostic vibration could happen. The simulations show that as the compressive force increases, the stiffness goes close to zero and the nonlinear characteristic becomes stronger to have a great effect on the isolation performance.

  • PDF

Nonlinear Rocking Vibration Characteristics for Rigid Block Subjected to Horizontal Sinusoidal Excitation (수평방향의 정현파 가진을 받는 강체 블록의 비선형 록킹진동특성)

  • 정만용;김정호;김지훈;정낙규;양인영
    • Journal of the Korean Society of Safety
    • /
    • v.14 no.4
    • /
    • pp.3-12
    • /
    • 1999
  • This research concentrates on the influence of non-linearities associated with impact for the nonlinear rocking behavior of rigid block subjected to one dimensional sinusoidal excitation of horizontal direction. The transition of two governing rocking equations, the abrupt reduction in the kinetic energy associated with impact, and sliding motion of block. In this study, two type of rocking vibration system are considered. One is the undamped rocking vibration system, disregarding energy dissipation at impact and the other is the damped rocking system, including energy dissipation and sliding motion. The response analysis using non-dimensional rocking equation is carried out for the change of excitation parameters and friction coefficient. The chaos responses were discovered in the wide response region, particularly, for the case of high excitation amplitude and their chaos characteristics were examined by the time history, Poincare map, power spectra and Lyapunov Exponent of rocking responses. The complex behavior of chaos response, in the phase space, were illustrated by Poincare map. The bifurcation diagram and Poincare map were shown to be effective in order to understand chaos of rocking system.

  • PDF

Switching Noise Reduction in Radiated from Three-Phase Induction Motor by Chaotic Random PWM Technique (카오스 랜덤 PWM기법을 이용한 3상 유도모터의 스위칭 소음저감)

  • Kim, J.H.;Jung, Y.G.;Oh, S.Y.;Lim, Y.C.
    • Proceedings of the KIEE Conference
    • /
    • 2004.10a
    • /
    • pp.134-138
    • /
    • 2004
  • 본 연구에서는 카오스 랜덤 PWM(Chaotic Random PWM) 기법에 의한 3상 유도모터의 스위칭 소음 저감에 대하여 다루고 있다. 일반적으로 사용되고 있는 랜덤 발생기로서 선형일치발생기(Linear Congruential Generator : LCG)대신에 로지스트 사상(Logistic Map)의 분기도(Bifurcation Diagram)를 랜덤 발생기로 사용하였다. 카오스 랜덤수 발생기는 80C196 마이크로 콘트롤러가 전담하고 있으며, 80C196으로부터 발생된 카오스랜덤 수와 MAX038에 의하여 삼각파 랜덤 캐리어가 발생되고 있다. 1.5kw급 3상 유도모터 구동 시스템에 카오스 RPWM기법을 적용하여 모터전압 및 전류 그리고 스위칭 소음의 스펙트럼을 고찰하였다. 카오스 RPWM과 LCG에 의한 RPWM의 결과를 각각 비교하였으며 본 연구의 타당성을 입증하였다.

  • PDF

Modeling and adaptive pole-placement control of LDPE autoclave reactor

  • Ham, Jae-Yong;Rhee, Hyun-Ku
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.146-151
    • /
    • 1992
  • A two-compartment four-cell model is developed for the adiabatic autoclave slim type reactor for free radical polymerization of low density polyethylene(LDPE). The mass and energy balances give rise to a set of ordinary differential equations, and by analyzing the system it is possible to predict properly not only the reactor performance but also the properties of polymer product. The steady state multiplicity is found to exist and examined by constructing the bifurcation diagram. The effects of various operation parameters on the reactor performance and polymer properties are investigated systematically to show that the temperature distribution plays the central role for the properties of polymer product. Therefore, it is essential to establish a good control strategy for the temperature in each compartment. In this study it is shown that the reactor system can be adoptively controlled by pole-placement algorithm with conventional PID controller. To accomplish a satisfactory control, the estimator and controller are initialized during the period of start-up.

  • PDF