• 제목/요약/키워드: Bifunctional enzyme

검색결과 35건 처리시간 0.025초

Cloning and characterization of phosphomannose isomerase from sphingomonas chungbukensis DJ77

  • Tran, Sinh Thi;Le, Dung Tien;Kim, Young-Chang;Shin, Malshik;Choi, Jung-Do
    • BMB Reports
    • /
    • 제42권8호
    • /
    • pp.523-528
    • /
    • 2009
  • Phosphomannose isomerase (PMI) catalyzes the interconversion of fructose-6-phosphate and mannose-6-phosphate in the extracellular polysaccharide (EPS) synthesis pathway. The gene encoding PMI in Sphingomonas chungbukensis DJ77 was cloned and expressed in E. coli. The pmi gene is 1,410 nucleotides long and the deduced amino acid sequence shares high homology with other bifunctional proteins that possess both PMI and GDP-mannose pyrophosphorylase (GMP) activities. The sequence analysis of PMI revealed two domains with three conserved motifs: a GMP domain at the N-terminus and a PMI domain at the C-terminus. Enzyme assays using the PMI protein confirmed its bifunctional activity. Both activities required divalent metal ions such as $Co^{2+}$, $Ca^{2+}$, $Mg^{2+}$, $Ni^{2+}$ or $Zn^{2+}$. Of these ions, $Co^{2+}$ was found to be the most effective activator of PMI. GDP-D-mannose was found to inhibit the PMI activity, suggesting feedback regulation of this pathway.

A Novel Selenium- and Copper-Containing Peptide with Both Superoxide Dismutase and Glutathione Peroxidase Activities

  • Zou, Xian-Feng;Ji, Yue-Tong;Gao, Gui;Zhu, Xue-Jun;Lv, Shao-Wu;Yan, Fei;Han, Si-Ping;Chen, Xing;Gao, Chang-Cheng;Liu, Jun-Qiu;Luo, Gui-Min
    • Journal of Microbiology and Biotechnology
    • /
    • 제20권1호
    • /
    • pp.88-93
    • /
    • 2010
  • Superoxide dismutase (SOD), glutathione peroxidase (GPX), and catalase (CAT) play crucial roles in balancing the production and decomposition of reactive oxygen species (ROS) in living organisms. These enzymes act cooperatively and synergistically to scavenge ROS. In order to imitate the synergism of these enzymes, we designed and synthesized a novel 32-mer peptide (32P) on the basis of the previous 15-mer peptide with GPX activity and a 17-mer peptide with SOD activity. Upon the selenation and chelation of copper, the 32-mer peptide was converted to a new Se- and Cu-containing 32-mer peptide (Se-Cu-32P) that displayed both SOD and GPX activities, and its kinetics was studied. Moreover, the novel peptide was demonstrated to be able to better protect vero cells from the injury induced by the xanthine oxidase (XOD)/xanthine/$Fe^{2+}$ damage system than its parents. Thus, this bifunctional enzyme imitated the synergism of SOD and GPX and could be a better candidate of therapeutic medicine.

Production of Bioactive 3'-Hydroxystilbene Compounds Using the Flavin-Dependent Monooxygenase Sam5

  • Heo, Kyung Taek;Lee, Byeongsan;Son, Sangkeun;Ahn, Jong Seog;Jang, Jae-Hyuk;Hong, Young-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권7호
    • /
    • pp.1105-1111
    • /
    • 2018
  • The flavin-dependent monooxygenase Sam5 was previously reported to be a bifunctional hydroxylase with coumarate 3-hydroxylase and resveratrol 3'-hydroxylase activities. In this article, we showed the Sam5 enzyme has 3'-hydroxylation activities for methylated resveratrols (pinostilbene and pterostilbene), hydroxylated resveratrol (oxyresveratrol), and glycosylated resveratrol (piceid) as substrates. However, piceid, a glycone-type stilbene used as a substrate for bioconversion experiments with the Sam5 enzyme expressed in Escherichia coli, did not convert to the hydroxylated compound astringin, but it was converted by in vitro enzyme reactions. Finally, we report a novel catalytic activity of Sam5 monooxygenase for the synthesis of piceatannol derivatives, 3'-hydroxylated stilbene compounds. Development of this bioproduction method for the hydroxylation of stilbenes is challenging because of the difficulty in expressing P450-type hydroxylase in E. coli and regiospecific chemical synthesis.

Catechol생산을 위한 Tyrosinase의 안정화 (Stabilization of Tyrosinase for Catechol Production)

  • 박종현;김용환유영제이윤식
    • KSBB Journal
    • /
    • 제9권5호
    • /
    • pp.525-531
    • /
    • 1994
  • 본 연구에서는 tyrosinase 효소반응시에 발생하는 반응 비활성화를 막아 조엽 얀정성을 향상시키는 것을 목적으로 연구를 수행하였다. Quinone에 의해 친핵성 공격을 받는 lysine기를 bifunctional rea gent인 glutaraldehyde로 변형시켜 줌으로써 효소 의 비활성화를 줄일 수 있었다. 또한, 고정화된 효소 를 충진층 반응기에 충진시켜 비활생화를 열으키는 생산물을 연속적으로 제거함으로써 효소의 얀정성을 크게 향상시켰다. 고정화 방법으로는 glass bead를 이용한 담체 가교법을 이용하였으며, 이때 glutaral­d dehyde와 효소의 lysine이 반응하게 되어 qumone 에 의한 친핵성 공격을 받지 않게 되어 안정성이 더욱 향상되 었다. 반응매 질로 borate buffer를 이용하 게되면 catechol과 borate의 복합체 형성으로 catechol에서 qumone으로의 전환이 줄어들게 되어 효소 비활성화가 감소하였다.

  • PDF

Chitinase, ${\beta}-1,3-glucanase$ 및 lysozyme 효소활성을 보유한 벼잎 산성단백질 RCG-2 (Isolation and Properties of a Protein, RCG-2, Having Chitinase, ${\beta}-1,3-Glucanase$ and Lysozyme Activities from Rice Leaves)

  • 엄성연;김수일
    • Applied Biological Chemistry
    • /
    • 제37권1호
    • /
    • pp.49-55
    • /
    • 1994
  • 벼잎의 산성용액 추출물로부터 ion exchange chromatography chitin affinity chromatography chromatofocusing gel slicing 등의 방법으로 단백질 RCG-2를 순수분리하였다. 본 단백질은 chitin과 laminarin을 가수분해하므로 chitinase와 ${\beta}-1,3-glucanase$ 활성을 함께 보유하고 있는 것으로 나타났으며, 이외에도 M. lysodeiktikus cell wall을 가수분해하는 lysozyme 활성도 보유하는 것으로 판명되었다. 분자량이 29.77 kd인 본 효소의 chitinase 활성은 pH 4.0에서, ${\beta}-1,3-glucanase$ 활성은 pH 7.0에서 최대로 나타났고, 최적온도는 두 효소 활성 모두 $40^{\circ}C$ 이었다. chitin에 대한 $K_M$ 값은 7.86 mM, $V_{max}$$0.025\;{\mu}M/min$, laminarin $({\beta}-1,3-glucan)$에 대한 것은 각각 5.95 mM, $0.16{\mu}\;M/min.$ 이었으며, 정제된 효소는 chitin을 chitooligosaccharide로 분해하는 것으로 나타나서 endochitinase로 판명되었다.

  • PDF

Purification and Biochemical Characterization of a Novel Fibrinolytic Enzyme from Streptomyces sp. P3

  • Cheng, Guangyan;He, Liying;Sun, Zhibin;Cui, Zhongli;Du, Yingxiang;Kong, Yi
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권9호
    • /
    • pp.1449-1459
    • /
    • 2015
  • A novel proteolytic enzyme with fibrinolytic activity, FSP3, was purified from the recently isolated Streptomyces sp. P3, which is a novel bacterial strain isolated from soil. FSP3 was purified to electrophoretic homogeneity by ammonium sulfate precipitation, anion exchange, and gel filtration. FSP3 is considered to be a single peptide chain with a molecular mass of 44 kDa. The maximum activity of the enzyme was observed at 50℃ and pH 6.5, and the enzyme was stable between pH 6 and 8 and below 40℃. In a fibrin plate assay, FSP3 showed more potent fibrinolytic activity than urokinase, which is a clinical thrombolytic agent acting as a plasminogen activitor. The activity was strongly inhibited by the serine protease inhibitor PMSF, indicating that it is a serine protease. Additionally, metal ions showed different effects on the activity. It was significantly suppressed by Mg2+ and Ca2+ and completely inhibited by Cu2+, but slightly enhanced by Fe2+. According to LC-MS/MS results, its partial amino acid sequences are significantly dissimilar from those of previously reported fibrinolytic enzymes. The sequence of a DNA fragment encoding FSP3 contained an open reading frame of 1287 base pairs encoding 428 amino acids. FSP3 is a bifunctional enzyme in nature. It hydrolyzes the fibrin directly and activates plasminogen, which may reduce the occurrence of side effects. These results suggest that FSP3 is a novel serine protease with potential applications in thrombolytic therapy.

Characterization of Calcium-Activated Bifunctional Peptidase of the Psychrotrophic Bacillus cereus

  • Kim Jong-Il;Lee Sun-Min;Jung Hyun-Joo
    • Journal of Microbiology
    • /
    • 제43권3호
    • /
    • pp.237-243
    • /
    • 2005
  • The protease purified from Bacillus cereus JH108 has the function of leucine specific endopeptidase. When measured by hydrolysis of synthetic substrate (N-succinyl-Ala-Ala-Pro-Leu-p-nitroanilide), the enzyme activity exhibited optimal activity at pH 9.0, $60^{\circ}C$. The endopeptidase activity was stimulated by $Ca^{++},\;Co^{++},\;Mn^{++},\;Mg^{++},\;and\;Ni^{++}$, and was inhibited by metal chelating agents such as EDTA, 1,10-phenanthroline, and EGTA. Addition of serine protease inhibitor, PMSF, resulted in the elimination of the activity. The endopeptidase activity was fully recovered from the inhibition of EDTA by the addition of 1 mM $Ca^{++}$, and was partially restored by $Co^{++}\;and\;Mn^{++}$, indicating that the enzyme was stabilized and activated by divalent cations and has a serine residue at the active site. Addition of $Ca^{++}$ increased the pH and heat stability of endopeptidase activity. These results show that endopeptidase requires calcium ions for activity and/or stability. A Lineweaver-Burk plot analysis indicated that the $K_m$ value of endopeptidase is 0.315 mM and $V_{max}$ is 0.222 ) is $0.222\;{\mu}mol$ of N-succinyl-Ala-Ala-Pro-Leu-p-nitroanilide per min. Bestatin was shown to act as a competitive inhibitor to the endopeptidase activity.

Cofactor Regeneration Using Permeabilized Escherichia coli Expressing NAD(P)+-Dependent Glycerol-3-Phosphate Dehydrogenase

  • Rho, Ho Sik;Choi, Kyungoh
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권8호
    • /
    • pp.1346-1351
    • /
    • 2018
  • Oxidoreductases are effective biocatalysts, but their practical use is limited by the need for large quantities of NAD(P)H. In this study, a whole-cell biocatalyst for NAD(P)H cofactor regeneration was developed using the economical substrate glycerol. This cofactor regeneration system employs permeabilized Escherichia coli cells in which the glpD and gldA genes were deleted and the gpsA gene, which encodes $NAD(P)^+-dependent$ glycerol-3-phosphate dehydrogenase, was overexpressed. These manipulations were applied to block a side reaction (i.e., the conversion of glycerol to dihydroxyacetone) and to switch the glpD-encoding enzyme reaction to a gpsA-encoding enzyme reaction that generates both NADH and NADPH. We demonstrated the performance of the cofactor regeneration system using a lactate dehydrogenase reaction as a coupling reaction model. The developed biocatalyst involves an economical substrate, bifunctional regeneration of NAD(P)H, and simple reaction conditions as well as a stable environment for enzymes, and is thus applicable to a variety of oxidoreductase reactions requiring NAD(P)H regeneration.

A Novel pH-Stable, Bifunctional Xylanase Isolated from a Deep-Sea Microorganism, Demequina sp. JK4

  • Meng, Xin;Shao, Zongze;Hong, Yuzhi;Lin, Ling;Li, Chanjuan;Liu, Ziduo
    • Journal of Microbiology and Biotechnology
    • /
    • 제19권10호
    • /
    • pp.1077-1084
    • /
    • 2009
  • A genomic library was constructed to clone a xylanase gene (Mxyn10) from Demequina sp. JK4 isolated from a deep sea. Mxyn10 encoded a 471 residue protein with a calculated molecular mass of 49 kDa. This protein showed the highest sequence identity (70%) with the xylanase from Streptomyces lividans. Mxyn10 contains a catalytic domain that belongs to the glycoside hydrolase family 10 (GH10) and a carbohydrate-binding module (CBM) belonging to family 2. The optimum pH and temperature for enzymatic activity were pH 5.5 and $55^{\circ}C$, respectively. Mxyn10 exhibited good pH stability, remaining stable after treatment with buffers ranging from pH 3.5 to 10.0. The protein was not significantly affected by a variety of chemical reagents, including some compounds that usually inhibit the activity of other related enzymes. In addition, Mxyn10 showed activity on cellulose. These properties mark Mxyn10 as a potential enzyme for industrial application and saccharification processes essential for bioethanol production.

Bifunctional Group Participated Nitrile Group Hydrolyzing Enzyme Model Systems: Hydrolysis of the Nitrile Group of $\alpha$-Aminophenylacetonitrile to Phenylglycineamide and Phenylglycine by Various thiol Compounds

  • Lee, Young-Bok;Goo, Yang-Mo;Lee, Jae-Keun
    • Archives of Pharmacal Research
    • /
    • 제11권4호
    • /
    • pp.285-291
    • /
    • 1988
  • 2-mercaptoethanol, thioglycolic acid, glutathione, 3-mercapto-1, 2-propanediol and 3-mercapto-2-butanol showed catalytic activities on the hydrolysis of $\alpha$-amino-phenylacetonitrile to phenylglycineamide at the rate of 12.19 $\times$ $10^{-2}$, 8.03 $\times$ $10^[-2}$, 6.83 $\times$ $10^{-2}$, 8.60 $\times$ $10^{-2}$ and 6.04 $\times$ $10^{-2}$ mM $min^{-1}$, respectively. hte hydrolysis rate was faster in buffer than in water. The hydrolysis of the nitrile compound to phenylglycine was limited.

  • PDF