• Title/Summary/Keyword: Biflavonoid (1)

Search Result 20, Processing Time 0.04 seconds

In vitro Anti-Cancer Effect of Wellness-Compound (Ochnaflavone) (In vitro 웰니스 화합물 (Ochnaflavone)에 의한 암세포 성장 저해)

  • Lee, Jae-Sook;Choi, Hwa-Jung;Kim, Myung-Ju;Park, Jang-Soon
    • Journal of Digital Convergence
    • /
    • v.13 no.5
    • /
    • pp.337-344
    • /
    • 2015
  • Medicinal plants containing wellness-fusion-complex compound are increasingly being pursued as suitable alternative sources of various biological properties. In this study, inhibitory effect of Quintinia acutifolia, which is a New Zealand plant, on P388 murine lymphocytic leukemia cells using MTT [3-(4,5-dimethylthiazol-2-yl)- 2,5-diphenyl-tetrazolium bromide] assay. Based on $^1H-NMR$, $^{13}C-NMR$ spectral data and other spectral analysis, 2,3,2'',3''-tetrahydroochanaflavone (1) and 2'',3''-dihydroochana-flavone (3) inhibited the leukemia cells were purified from the plants. 2,3,2'',3''-tetrahydroochanaflavone (1) and 2'',3''-dihydroochana-flavone (3) are biflavonoids possessing two basic flavonoids and actively inhibited growth of P388 murine lymphocytic leukemia cells with a 50% inhibitory concentration ($IC_{50}$) of $8.2{\mu}g/mL$ and $3.1{\mu}g/mL$, respectively. Specially, 2'',3''-dihydroochana-flavone (3) possessed unconjugated flavonone system, which isn't consist of a pair with B ring of 2,3,2'',3''-tetrahydroochanaflavone (1). Therefore, the two compounds could be considered as a candidate for development of anticancer drugs and need to much studies in the future.

Removal of Phenthoate Residues During the Preparation of Dietary Fiber and Bioflavonoid from Mandarin Peels (밀감과피의 식이섬유 및 Bioflavonoid 정제 중 Phenthoate 잔류분의 제거)

  • 이서래;권영주;이미경
    • Journal of Food Hygiene and Safety
    • /
    • v.12 no.1
    • /
    • pp.39-46
    • /
    • 1997
  • Mandarin orange fruits were artificially contaminated with an organophosphorus insecticide phenthoate by dipping and the residue level of phenthoate was investigated during the purification steps of dietary fiber or bioflavonoid. The removal rate of phenthoate at 8 and 0.5 ppm levels was 98% in the total dietary fiber, 99% in the insoluble dietary fiber and 99.8% in the soluble dietary fiber preparations. Kuring the preparation of biflavonoid from peels at a 5 ppm pesticide level, the removal rate was 90% in the intermediate extract and 99.9% in the final extract. In conclusion, phenthoate residues in the peels of mandarin orange were mostly removed during the preparation processes of dietary fiber of bioflavonoid and its residue level would not raise any problem in safety aspects of the purified products.

  • PDF

Flavonoids: Potential Antiinflammatory Agents

  • Kim, Hyun-Pyo;Son, Kun-Ho;Chang, Hyun-Wook;Kang, Sam-Sik
    • Natural Product Sciences
    • /
    • v.2 no.1
    • /
    • pp.1-8
    • /
    • 1996
  • Flavonoids are widely distributed polyphenol compounds in plant kingdom and known to possess varieties of biological/pharmacological activities in vitro and in vivo. A search for antiinflammatory/immunoregulatory flavonoids as potential therapeutic agents has been continued, since serious side effects of currently used nonsteroidal and steroidal antiinflammatory drugs limit their long term uses for the inflammatory disorders. In this reserch, various flavonids were isolated and tested for their in vivo antiinflammatory activity and in vitro inhibitory activity of lymphocyte proliferation. Using a mouse ear edema assay, it was found that certain flavones/flavonols possess mild antiinflammatory activity and a C-2,3-double bond might be essential. Isoflavones were less active. These flavonoids inhibited in vitro lymphocyte proliferation, relatively specific for T-cell proliferation $(IC_{50}=1-10\;{\mu}M)$ and the inhibition was reversible. We have also tested several biflavonoid derivatives, since we recently found that biflavones were phospholipase $A_2$ inhibitors. It was demonstrated that biflavones such as ochnaflavone and ginkgetin inhibited lymphocyte proliferation induced by both concanavaline A and lipopolysaccharide. The inhibition was irreversible in contrast to that of flavones/flavonols. And antiinflammatory activity of biflavonoids are discussed.

  • PDF

Flavonoid Components in Plants of the Genus Scutellaria

  • YunChoi, Hye-Sook
    • Korean Journal of Pharmacognosy
    • /
    • v.23 no.4
    • /
    • pp.201-210
    • /
    • 1992
  • Scutellariae plants contain a large number of flavonoids and in addition, many of them are with unusual A- and/or B-ring substitutions. The total number of flavonoids reported up to the middle of 1991 are 137 including 89 of flavones, flavonols and their glycosides including 3 C-glycosides$(1{\sim}89)$, 39 of flavanones, dihydroflavonols and their glycosides $(90{\sim}128)$, 8 of chalcones $(129{\sim}136)$ and one biflavonoid, 8, 8'-bibaicalein(137). More than half of the flavonoids are with either unusual 5-metboxy(2'-methoxy in case of chalcones) in A-ring and/or 2'-oxygenation(2-oxygenation in case of chalcones) in B-ring substitutions. Four flavones, four flavanones and two chalcones are with methylation at 5-OH(2'-OH in case of chalcones) and six of them also have 2'-oxygenations(2- in case of chalcones). Sixtyeight out of total 137 flavonoids have oxygenated substitution at 2'-(2- in case of chalcones) position of B-ring and in addition, 27 of them have another oxygen function at 6'-(6- in case of chalcones) and 18 of them have additional oxygen substitutions either at 3'-, 5'-,3',6'-or 3', 4', 5'-(3, 4, 5- in case of chalcones) positions. The distribution and isolation of flavonoid components of Scutellariae plants are tabulated with references.

  • PDF

Synthesis of Ochnaflavone and Its Inhibitory Activity on PGE2 Production

  • Kim, Sung Soo;Vo, Van Anh;Park, Haeil
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.11
    • /
    • pp.3219-3223
    • /
    • 2014
  • Ochnaflavone, a naturally occurring biflavonoid composed of two units of apigenin (5,7,4'-trihydroxyflavone) joined via a C-O-C linkage, was first synthesized and evaluated its inhibitory activity on $PGE_2$ production. Total synthesis was accomplished through modified Ullmann diaryl ether formation as a key step. Coupling reactions of 4'-halogenoflavones and 3'-hydroxy-5,7,4'-trimethoxyflavone were explored in diverse reaction conditions. The reaction of 4'-fluoro-5,7-dimethoxyflavone (2c) and 3'-hydroxy-5,7,4'-trimethoxyflavone (2d) in N,N-dimethylacetamide gave the coupled compound 3 in 58% yield. Synthetic ochnaflavone strongly inhibited PGE2 production ($IC_{50}=1.08{\mu}M$) from LPS-activated RAW 264.7 cells, which was due to reduced expression of COX-2. On the contrary, the inhibition mechanism of wogonin was somewhat different from that of ochnaflavone although wogonin, a natural occurring anti-inflammatory flavonoid, showed strong inhibitory activity of $PGE_2$ production ($IC_{50}=0.52{\mu}M$), and seems to be COX-2 enzyme inhibition. Our concise total synthesis of ochnaflavone enable us to provide sufficient quantities of material for advanced biological studies as well as to efficiently prepare derivatives for structure-activity relationship study.

Polyphenolic Biflavonoids Inhibit Amyloid-Beta Fibrillation and Disaggregate Preformed Amyloid-Beta Fibrils

  • Choi, Erika Y.;Kang, Sam Sik;Lee, Sang Kook;Han, Byung Hee
    • Biomolecules & Therapeutics
    • /
    • v.28 no.2
    • /
    • pp.145-151
    • /
    • 2020
  • Alzheimer's disease (AD) is a devastating neurodegenerative disease and a major cause of dementia in elderly individuals worldwide. Increased deposition of insoluble amyloid β (Aβ) fibrils in the brain is thought be a key neuropathological hallmark of AD. Many recent studies show that natural products such as polyphenolic flavonoids inhibit the formation of insoluble Aβ fibrils and/or destabilize β-sheet-rich Aβ fibrils to form non-cytotoxic aggregates. In the present study, we explored the structure-activity relationship of naturally-occurring biflavonoids on Aβ amyloidogenesis utilizing an in vitro thioflavin T assay with Aβ1-42 peptide which is prone to aggregate more rapidly to fibrils than Aβ1-40 peptide. Among the biflavonoids we tested, we found amentoflavone revealed the most potent effects on inhibiting Aβ1-42 fibrillization (IC50: 0.26 µM), as well as on disassembling preformed Aβ1-42 fibrils (EC50: 0.59 µM). Our structure-activity relationship study suggests that the hydroxyl groups of biflavonoid compounds play an essential role in their molecular interaction with the dynamic process of Aβ1-42 fibrillization. Our atomic force microscopic imaging analysis demonstrates that amentoflavone directly disrupts the fibrillar structure of preformed Aβ1-42 fibrils, resulting in conversion of those fibrils to amorphous Aβ1-42 aggregates. These results indicate that amentoflavone affords the most potent anti-amyloidogenic effects on both inhibition of Aβ1-42 fibrillization and disaggregation of preformed mature Aβ1-42 fibrils.

Cytotoxic, Anti-Inflammatory and Adipogenic Effects of Inophyllum D, Calanone, Isocordato-oblongic acid, and Morelloflavone on Cell Lines

  • Taher, Muhammad;Aminuddin, Amnani;Susanti, Deny;Aminudin, Nurul Iman;On, Shamsul;Ahmad, Farediah;Hamidon, Hanisuhana
    • Natural Product Sciences
    • /
    • v.22 no.2
    • /
    • pp.122-128
    • /
    • 2016
  • This paper reports in vitro cytotoxic, anti-inflammatory and adipocyte diffentiation with adipogenic effects of coumarins inophyllum D (1) and calanone (2), and a chromanone carboxylic acid namely isocordato-oblongic acid (3) isolated from Calophyllum symingtonianum as well as a biflavonoid morelloflavone (4) isolated from Garcinia prainiana on MCF-7 breast adenocarcinoma RAW 264.7 macrophages and 3T3-L1 preadipocytes cells, respectively. The cytotoxicity study on MCF-7 cell was conducted by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Meanwhile, the study of anti-inflammatory effects in RAW 264.7 macrophages and adipogenic effects on 3T3-L1 pre-adipocytes were conducted through nitrite determination assay and induction of adipocyte differentiation, respectively. In the cytotoxicity study, inophyllum D (1) was the only compounds that exhibited significant cytotoxic effect against MCF-7 cell with $IC_{50}$ of $84{\mu}g/mL$. Further, all by inhibiting the compounds have shown anti-inflammatory effects in lipopolysaccharide (LPS)-induced RAW 264.7 macrophages of nitrite concentration with production. In addition, the compounds also exhibited adipogenic effects on 3T3-L1 pre-adipocytes by stimulating lipid formation. Thus, this study may provide significant input in discovery of the potential effects cytotoxic, anti-inflammatory and adipogenic agents.

Biapigenin, Candidate of an Agonist of Human Peroxisome Proliferator-Activated Receptor γ with Anticancer Activity

  • Kim, Jin-Kyoung;Shin, So-Young;Lee, Jee-Young;Lee, So-Jung;Lee, Eun-Jung;Jin, Qinglong;Lee, June-Young;Woo, Eun-Rhan;Lee, Dong-Gun;Yoon, Do-Young;Kim, Yang-Mee
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.8
    • /
    • pp.2717-2721
    • /
    • 2011
  • Peroxisome proliferator-activated receptors (PPARs) are a subfamily of nuclear receptors (NRs). Human peroxisome proliferator-activated receptor gamma (hPPAR${\gamma}$) has been implicated in the pathology of numerous diseases, including obesity, diabetes, and cancer. ELISA-based hPPAR${\gamma}$ activation assay showed that biapigenin increased the binding between hPPAR${\gamma}$ and steroid receptor coactivator-1 (SRC-1) by approximately 3-fold. In order to confirm that biapigenin binds to hPPAR${\gamma}$, fluorescence quenching experiment was performed. The results showed that biapigenin has higher binding affinity to hPPAR${\gamma}$ at nanomolar concentrations compared to indomethacin. Biapigenin showed anticancer activity against HeLa cells. Biapigenin was noncytotoxic against HaCa T cell. All these data implied that biapigenin may be a potent agonist of hPPAR${\gamma}$ with anticancer activity. We will further investigate its anticancer effects against human cervical cancer.

Low Density Lipoprotein-oxidation Inhibitory Phytochemicals from the Fruits of Rhus parviflora

  • Shrestha, Sabina;Park, Ji-Hae;Cho, Jin-Gyeong;Lee, Dae-Young;Kang, Ji-Hyun;Li, Hua;Jeong, Tae-Sook;Kim Cho, Somi;Lee, Dong-Sun;Baek, Nam-In
    • Journal of Applied Biological Chemistry
    • /
    • v.58 no.2
    • /
    • pp.109-112
    • /
    • 2015
  • Fruits of Rhus parviflora were extracted with 80% aqueous methanol (MeOH), and the concentrated extract was partitioned using ethyl acetate (EtOAc), n-butanol (n-BuOH), and $H_2O$, successively. Purification of EtOAc fraction led to isolation of fifteen polyphenols of which structures were identified by spectroscopic methods including 2D-NMR. Most compounds apart from compound 10 inhibited low density lipoproteinoxidation within $IC_{50}$ value of $10{\mu}M$. Among compounds, taxifolin (2), quercetin 3-O-${\alpha}$-L-rhamnopyranoside (13), agathisflavone (5) sulfuretin (4), and aureusidin (3) showed $IC_{50}$ values 0.9, 0.8, 5.8, 2.9, and $2.4{\mu}M$ which were of highly significant in comparison positive control butylated hydroxytoluene with $IC_{50}$ value of $2.1{\mu}M$. The results indicate fruits of R. parviflora as a source of antihypercholesterolemic compounds.

Suppression of Matrix Metalloproteinase-9 Expression of Flavonoids from Metasequoia glyptostroboides (낙우송(Metasequoia glyptostroboides)으로부터 분리한 flavonoid의 금속단백분해효소-9 발현 억제 활성)

  • Yang Jae-Young;Lee Ho-Jae;Kho Yung-Hee;Kwon Byoung-Mok;Chun Hyo Kon
    • Journal of Life Science
    • /
    • v.15 no.2 s.69
    • /
    • pp.231-235
    • /
    • 2005
  • Matrix metalloproteinases (MMPs) are a family of structurally and functionally related zinc-dependent enzymes responsible for proteolytic degradation of extracellular matrix components such as base membrane or interstitial stroma. MMPs play an important role in a variety of physiological and pathological tissue remodeling processes, including wound healing, embryo implantation, tumor invasion and metastasis. Since MMP-9 (gelatinase B) has unique ability to cleave type IV collagen, gene expression of MMP-9 has been focused on as a pharmacological target. Flavonoids are a class of compounds that are widely spread in plants. In the coures of screening for the suppressors of MMP-9 gene expression from natural products, Metasequoia glyptostroboides was selected. Six flavonoids, sciadopitysin, isoginkgetin, bilobetin, 2,3-dihydrohinokiflavone, luteolin and apigenin were purified as suppressors of MMP-9 gene expression from M. glyptostroboides. The suppressing activity of the isolated flavinoids on the MMP-9 gene expression was measured by gelatin zymography and Nothern blot analysis.