• 제목/요약/키워드: Bicycle Suspension

검색결과 10건 처리시간 0.023초

차량 모델의 복잡성이 차량동력학 해석에 미치는 영향 : 모델의 비교 및 검증 (An Effect of the Complexity in Vehicle Dynamic Models on the Analysis of Vehicle Dynamic Behaviors: Model Comparison and Validation)

  • 배상우;윤중락;이장무;탁태오
    • 한국자동차공학회논문집
    • /
    • 제8권6호
    • /
    • pp.267-278
    • /
    • 2000
  • Vehicle dynamic models in handing and stability analysis are divided into three groups: bicycle model, roll axis model and full vehicle model. Bicycle model is a simple linear model, which hag two wheels with load transfer being ignored. Roll axis model treats left and right wheels independently. In this model, load transfer has a great effect on nonlinearity of tire model. Effects of suspension system can be analyzed by using full vehicle model, which is included suspension stroke motions. In this paper, these models are validated and compared through comparison with road test, and the effects of suspension kinematics and compliance characteristics on vehicle motion are analyzed. In handling and stability analysis, roll axis model can simulate the real vehicle motion more accurately than full vehicle model. Compliance steer has a significant effect, but the effect of suspension kinematics is negligible.

  • PDF

자전거용 반능동 현가기구 개발에 관한 연구 (The study on the semi-active suspension system for bicycle)

  • 주형준;김찬중;이동원;이봉현
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2011년도 추계학술대회 논문집
    • /
    • pp.775-780
    • /
    • 2011
  • This paper represents the study on the development of semi-active bicycle suspension system. The road vibration and transmissibility of front suspension are obtained by driving test on proving ground. The numerical simulation is evaluated by dynamic system modeling and equation of motion. The numerical simulation are performed to estimate the optimal damping force for minimal vibration transmission. And oscillating displacement is calculated and analyzed. Therefore the stoke which convert the damping characteristics is suggested from the driving test and numerical simulation.

  • PDF

자전거 서스펜션 안장봉에 대한 구조 안정성 해석 (Structural Safety Analysis on Bicycle Suspension Seat Post)

  • 한문식;조재웅
    • 한국기계가공학회지
    • /
    • 제11권4호
    • /
    • pp.72-81
    • /
    • 2012
  • This study investigates structural, fatigue and modal analyses at bicycle suspension seat post. When weight is applied to the saddle, models 1 and 2 have the weakest strength at the part connected with saddle. And model 2 is greater total deformation and equivalent stress than model 1. Among the cases of nonuniform fatigue loads at models 1 and 2, 'SAE bracket history' with the severest change of load becomes most unstable but 'Sample history' becomes most stable. In case of 'Sample history' with the average stress of 0 to $-10^4MPa$ and the amplitude stress of 0 to $10^4MPa$, the possibility of maximum damage becomes 4%. This stress state can be shown with 5 to 7times more than the damage possibility of 'SAE bracket history' or 'SAE transmission'. Model 1 has better impulse relaxation and passenger sensitivity than model 2. The structural result of this study can be effectively utilized with the design of bicycle suspension seat post by investigating prevention and durability against its damage.

자전거에서 서스펜션 종류에 따른 인체영향 시뮬레이션 (Evaluation of Shock-Absorbing Performance of Three-Different Types of Bicycle Suspension Systems)

  • 정경렬;형준호;김사엽
    • 대한기계학회논문집A
    • /
    • 제34권7호
    • /
    • pp.943-946
    • /
    • 2010
  • 본 연구에서는 소형자전거의 핸들에 적용할 수 있는 전방 서스펜션을 제안하고 시뮬레이션을 통해 충격흡수 성능을 평가하였다. 서스펜션이 없는 경우, 기존의 전방포크서스펜션이 장착된 경우 그리고 제안된 핸들서스펜션이 장착된 경우 등 3가지 서스펜션 종류에 대해 인체모델을 이용한 주행시뮬레이션을 수행하여 각각의 완충성능을 비교평가 하였다. 시뮬레이션 결과 제안된 핸들 서스펜션의 경우 손과 머리에 전달된 가속도가 기존의 전방포크서스펜션이 장착된 경우보다 크게 측정되었지만 서스펜션이 없는 자전거의 경우보다는 현저히 작게 측정되었다. 이 같은 결과는 제안된 핸들 서스펜션이 상당한 완충 성능을 보여주었으며 이는 경량화가 중요한 소형자전거에 적용이 가능할 것으로 보인다.

자전거 주행 중 발생하는진동이 인체에 미치는 영향 (The study on the influences of vibration associated with cycling on the human body)

  • 정경렬;형준호;김사엽
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2009년도 추계학술대회 논문집
    • /
    • pp.643-646
    • /
    • 2009
  • This study was conducted to simulate the influence of vibration associated with cycling on the body. In this simulation the human model that the riding on a bicycle which have suspension and non-suspension front forks was used. And to arouse impact two kind of bump, 50mm height of radical raised spot and 150mm height of slow raised spot, were used. The vertical displacement of head, the vertical acceleration of head and the torque of neck joint were analysed. The results say that the function of shock absorbing was grater when passing though a 50mm height of radical raised spot then a 150mm height of slow raised spot.

  • PDF

유공압 회로를 이용한 자전거 포크용 가변댐퍼-공압스프링 서스펜션의 해석 (Analysis of a Variable Damper and Pneumatic Spring Suspension for Bicycle Forks using Hydraulic-Pneumatic Circuit Model)

  • 장문석;최영휴;김수태;최재일
    • 드라이브 ㆍ 컨트롤
    • /
    • 제16권1호
    • /
    • pp.7-13
    • /
    • 2019
  • The objective of this study was to present a damped pneumatic suspension, a bike fork suspension, which can adapt itself to incoming road excitations is presented in this paper. It consists of a hydraulic damper and a pneumatic spring in parallel with a linear spring. The study also proposed a variable and switchable orifice, in the hydraulic damper, to select appropriate damping property. Hydraulic-pneumatic circuit model for the bike fork suspension was established based on AMESim, in order to predict its performance. In addition, elastic-damping characteristics of the fork such as spring constant and viscous damping coefficient were computed and compared, for validation, with those evaluated by experiment using the universal test machine. Through simulation analysis and test, it was established that the hydraulic-pneumatic circuit model is effective and practical for development of future MTB suspensions.

4WS 차량의 모델링 및 동적 해석 (Modeling & Dynamic Analysis for Four Wheel Steering Vehicles)

  • 장진희;정웅상;한창수
    • 한국자동차공학회논문집
    • /
    • 제3권3호
    • /
    • pp.66-78
    • /
    • 1995
  • In this paper, we address vehicle modeling and dynamic analysis of four wheel steering systems (4WS). 4WS is one of the devices used for the improvement of vehicle maneuverability and stability. All research done here is based on a production vehicle from a manufacturer. To study actual system response, a three dimensional, full vehicle model was created. In past research of this type, simple, two dimensional, bicycle vehicle models were typically used. First, we modelled and performed a dynamic analysis on a conventional two wheel steering(2WS) vehicle. The modeling and analysis for this model and subsequent 4WS vehicles were performed using ADAMS(Automatic Dynamic Analysis of Mechanical Systems) software. After the original vehicle model was verified with actual experiment results, the rear steering mechanism for the 4WS vehicle was modelled and the rear suspension was changed to McPherson-type forming a four wheel independent suspension system. Three different 4WS systems were analyzed. The first system applied a mechanical linkage between the front and rear steering mechanisms. The second and third systems used, simple control logic based on the speed and yaw rate of the vehicle. 4WS vehicle proved dynamic results through double lane change test.

  • PDF

Development for Tilting Train Dynamics Motion Base

  • Song, Yong-Soo;Shin, Seung-Kwon;Kim, Jung-Seok;Ho, Seong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.1158-1161
    • /
    • 2004
  • This paper describes the construction of a half sphere screen driving tilting simulator that can perform six degree-of-freedom (DOF) motions simulator to a tilting train. The mathematical equations of Tilting Train dynamics are first derived from the 6-DOF bicycle model and incorporated with the bogie, carbody, and suspension subsystems. The equations of motion are then programmed by visual C++ code. To achieve the simulator functions, a motion platform that is constructed by six electric-driven actuators is designed, and its kinetics/inverse kinetics analysis is also conducted. Driver operation signals such as carbady angle, accelerator, and tilting positions are measured to trigger the Tilting dynamics calculation and further actuate the cylinders by the motion platform control program. In addition, a digital PID controller is added to achieve the stable and accurate displacements of the motion platform. The experiments prove that the designed simulator is adequate in performing some special rail road driving situations discussed in this paper.

  • PDF

틸팅 시뮬레이터의 운동판 설계에 관한 연구 (Development for Motion Evaluation of Tilting Simulator)

  • 송용수;김정석;이수길;한성호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 D
    • /
    • pp.2631-2633
    • /
    • 2004
  • This paper describes the construction of a half sphere screen driving tilting simulator that can perform six degree-of-freedom( DOF) motions simmulator to a tilting train. The mathematical equations of Tilting Train dynamics are first derived from the 6-DOF bicycle model and incorporated with the bogie. carbody, and suspension subsystems. The equations of motion are then programmed by visual C++ code. To achieve the simulator functions. a motion platform that is constructed by six electric-driven actuators is designed. and its kinetics/inverse kinetics analysis is also conducted. Driver operation signals such as carbady angle, accelerator. and tilting positions are measured to trigger the Tilting dynamics calculation and further actuate the cylinders by the motion platform control program. In addition. a digital PID controller is added to achieve the stable and accurate displacements of the motion platform. The experiments prove that the designed simulator is adequate in performing some special rail mad driving situations discussed in this paper.

  • PDF