• 제목/요약/키워드: Bi-perovskite

검색결과 136건 처리시간 0.028초

Electrical Properties of Sol-gel Derived Ferroelectric Bi3.35Sm0.65Ti3O12 Thin Films by Rapid Thermal Annealing

  • Cho, Tae-Jin;Kang, Dong-Kyun;Kim, Byong-Ho
    • Transactions on Electrical and Electronic Materials
    • /
    • 제6권2호
    • /
    • pp.51-56
    • /
    • 2005
  • Ferroelectric Bi$_{3.35}$Sm$_{0.65}$Ti$_{3}$O$_{12}$(BSmT) thin films were synthesized using a sol-gel process. Bi(TMHD)$_{3}$, Sm$_{5}$(O$^{i}$Pr)13, Ti(O$^{i}$Pr)4 were used as the precursors, which were dissolved in 2­methoxyethanol. The BSmT thin films were deposited on Pt/TiO$_{x}$/SiO$_{2}$/Si substrates by spin­coating. The electrical properties of the thin films were enhanced using rapid thermal annealing process (RTA) at 600 $^{circ}$C for 1 min in O$_{2}$. Thereafter, the thin films were annealed from 600 to 720 $^{circ}$C in oxygen ambient for 1 hr, which was followed by post-annealed for 1 hr after depositing a Pt electrode to enhance the electrical properties. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to analyze the crystallinity and surface morphology of layered perovskite phase, respectively. The remanent polarization value of the BSmT thin films annealed at 720 $^{circ}$C after the RTA treatment was 35.31 $\mu$C/cmz at an applied voltage of 5 V.

무연 0.74(Bi0.5Na0.5)TiO3-0.26SrTiO3 압전 세라믹스의 하소온도 변화에 따른 전기적 특성 변화 (Piezoelectric Characteristics of Lead-Free 0.74(Bi0.5Na0.5)TiO3-0.26SrTiO3 Ceramics According to Calcination Temperature)

  • 김성현;이상훈;한형수;이재신
    • 한국전기전자재료학회논문지
    • /
    • 제32권1호
    • /
    • pp.35-39
    • /
    • 2019
  • In this study, we investigated the optimum calcination temperature of lead-free $0.74(Bi_{0.5}Na_{0.5})TiO_3-0.26SrTiO_3$(BNST) piezoelectric ceramics by analyzing the crystal structure, dielectric properties, and electric field-induced strain behavior. BNST ceramics prepared by conventional solid-state reaction methods at various calcination temperatures according to the industrial standard. All samples of BNST ceramics were subsequently sintered at $1,175^{\circ}C$ for 2 h. Crystal structure classification of the ceramics showed a single perovskite phase, with no second phase detectable for the samples calcined at $750^{\circ}C$ or higher. BNST samples calcined at $850^{\circ}C$ exhibited the most optimal values for itsand the common physical parameters of $density=5.518g/cm^3$, ${\varepsilon}=1,871.837$, $tan{\delta}=0.047$, and ${d_{33}}^*=874pm/V$.

초교환 상호작용 제어를 통해 강유전 BiFeO3-BaTiO3 시스템에서 유도된 상온 강자성 거동 (Room-Temperature Ferromagnetic Behavior in Ferroelectric BiFeO3-BaTiO3 System Through Engineered Superexchange Path)

  • 고누리;조재현;장종문;조욱
    • 한국전기전자재료학회논문지
    • /
    • 제34권5호
    • /
    • pp.386-392
    • /
    • 2021
  • Multiferroics exhibiting the coexistence and a possible coupling of ferromagnetic and ferroelectric order are attracting widespread interest in terms of academic interests and possible applications. However, room-temperature single-phase multiferroics with soft ferromagnetic and displacive ferroelectric properties are still rare owing to the contradiction in the origin of ferromagnetism and ferroelectricity. In this study, we demonstrated that sizable ferromagnetic properties are induced in the ferroelectric bismuth ferrite-barium titanate system simply by introducing Co ions into the A-site. It is noted that all modified compositions exhibit well-saturated magnetic hysteresis loops at room temperature. Especially, 70Bi0.95Co0.05FeO3-30Ba0.95Co0.05TiO3 manifests noticeable ferroelectric and ferromagnetic properties; the spontaneous polarization and the saturation magnetization are 42 µC/cm2 and 3.6 emu/g, respectively. We expect that our methodology will be widely used in the development of perovskite-structured multiferroic oxides.

수정합성공정에 의한 무연 (1-x)BaTiO3-x(Bi0.5Na0.5)TiO3 (0.01≤x≤0.10) 세라믹의 PTCR 특성 연구 (Investigation on PTCR Characteristics of (1-x)BaTiO3-x(Bi0.5Na0.5)TiO3 (0.01≤x≤0.10) Ceramics by Modified Synthesis Process)

  • 김경범;김창일;정영훈;이영진;백종후;이우영;김대준
    • 한국전기전자재료학회논문지
    • /
    • 제23권12호
    • /
    • pp.929-935
    • /
    • 2010
  • $(1-x)BaTiO_3-x(Bi_{0.5}Na_{0.5})TiO_3$ ($0.01{\leq}x{\leq}0.10$) ceramics were fabricated with muffled sintering by a modified synthesis process. Their positive temperature coefficient of resistivity (PTCR) characteristics were investigated systematically. All specimen showed a perovskite structure with a tetragonal symmetry. Both the lattice parameter of a and c axes were slightly decreased with increasing $(Bi_{0.5}Na_{0.5})TiO_3$ (BNT) content. Grain growth was achieved when the incorporated BNT was increased to 6 mol% and the inhibition of grain growth is considered to be due to the appearance of Ba vacancy ($V^{"}_{Ba}$) in the $(1-x)BaTiO_3-x(Bi_{0.5}Na_{0.5})TiO_3$ ($0.08{\leq}x$). With 4 mol% BNT addition, room temperature resistivity decreased to $48 \Omega{\cdot}cm$ and a resistivity jump ($\rho_{max}/\rho_{min}$) was as high as $1.1{\times}10^4$, respectively. Curie temperature was also increased to $171^{\circ}C$ with increasing BNT content.

무연 완화형/정규 강유전체 복합소재 [0.97Bi1/2(Na0.78K0.22)1/2TiO3-0.03LaFeO3]-Bi1/2(Na0.82K0.18)1/2TiO3의 저전계 전계유기 변형 특성 연구 (Tailoring Low-field Strain Properties of [0.97Bi1/2(Na0.78K0.22)1/2TiO3-0.03LaFeO3]-Bi1/2(Na0.82K0.18)1/2TiO3 Lead-Free Relaxor/Ferroelectric Composites)

  • 홍창효;강진규;조욱;이재신
    • 한국전기전자재료학회논문지
    • /
    • 제29권6호
    • /
    • pp.342-347
    • /
    • 2016
  • We investigated the effect of $Bi_{1/2}(Na_{0.82}K_{0.18})_{1/2}TiO_3$ (BNKT) modification on the ferroelectric and electric-field-induced strain (EFIS) properties of lead-free $0.97Bi_{1/2}(Na_{0.82}K_{0.18})_{1/2}TiO_3-0.03LaFeO_3$ (BNKTLF) ceramics as a function of BNKT content (x= 0, 0.1, 0.2, 0.3, 0.5, and 1). BNKT-modified BNKTLF powders were synthesized using a conventional solid-state reaction method. As the BNKT content x increased from 0 to 1 the normalized electric-field-induced strain ($S_{max}/E_{max}$) was observed to increase at relatively low fields, i.e., below the poling field. Moreover, BNKTLF-30BNKT showed about 460 pm/V as low as at 3 kV/mm, which is a considerably high value among the lead-free systems reported so far. Consequently, it was confirmed that ceramic-ceramic composite, a mixture of an ergodic relaxor matrix and embedded ferroelectric seeds, is a salient way to make lead-free piezoelectrics practical with enhanced EFIS at low field as well as less hysterical.

Direct Determination of Cationic Disordering in Sodium Bismuth Titanate

  • Choi, Si-Young;Ikuhara, Yuichi
    • Applied Microscopy
    • /
    • 제42권3호
    • /
    • pp.164-173
    • /
    • 2012
  • The relaxor ferroelectric feature in lead-free perovskite oxides, where the dipoles are randomly oriented and they can be feasibly aligned parallel to the external bias, is attracting lots of attention in the field of piezoelectric materials science, since it is one of candidates to replace the toxic lead-based materials that are still being commercially used. However, the origin of relaxor characteristic and its related atomic structure are still ambiguous. In this study, $Na_{1/2}Bi_{1/2}TiO_3$, chosen as a model relaxor system, was found to exhibit a cationic-disordered atomic structure; and furthermore the nonpolar atomic structure and its related oxygen tilting were ascertained via annular bright field imaging skill. We also found that this cationic disordering gives rise to the local formation of atomic vacancies.

Na2Ti6O13를 도핑한 0.94BaTiO3-0.06(Bi0.5Na0.5)TiO3 세라믹스의 미세구조와 Positive Temperature Coefficient of Resistivity 특성 (Microstructure and Positive Temperature Coefficient of Resistivity Characteristics of Na2Ti6O13-Doped 0.94BaTiO33-0.06(Bi0.5Na0.5)TiO3 Ceramics)

  • 차유정;정영훈;이영진;백종후;이우영;김대준
    • 한국재료학회지
    • /
    • 제20권11호
    • /
    • pp.575-580
    • /
    • 2010
  • The microstructure and positive temperature coefficient of resistivity (PTCR) characteristics of 0.1 mol%$Na_2Ti_6O_{13}$ doped $0.94BaTiO_3-0.06(Bi_{0.5}Na_{0.5})TiO_3$ (BBNT-NT001) ceramics sintered at various temperatures from $1200^{\circ}C$ to $1350^{\circ}C$ were investigated in order to develop eco-friendly PTCR thermistors with a high Curie temperature ($T_C$). Resulting thermistors showed a perovskite structure with a tetragonal symmetry. When sintered at $1200^{\circ}C$, the specimen had a uniform microstructure with small grains. However, abnormally grown grains started to appear at $1250^{\circ}C$ and a homogeneous microstructure with large grains was exhibited when the sintering temperature reached $1325^{\circ}C$. When the temperature exceeded $1325^{\circ}C$, the grain growth was inhibited due to the numerous nucleation sites generated at the extremely high temperature. It is considered that $Na_2Ti_6O_{13}$ is responsible for the grain growth of the $0.94BaTiO_3-0.06(Bi_{0.5}Na_{0.5})TiO_3$) ceramics by forming a liquid phase during the sintering at around $1300^{\circ}C$. The grain growth of the BBNT-NT001 ceramics was significantly correlated with a decrease of resistivity. All the specimens were observed to have PTCR characteristics except for the sample sintered at $1200^{\circ}C$. The BBNT-NT001 ceramics had significantly decreased $\tilde{n}_{rt}$ and increased resistivity jump with increasing sintering temperature at from $1200^{\circ}C$ to $1325^{\circ}C$. Especially, the BBNT-NT001 ceramics sintered at $1325^{\circ}C$ exhibited superior PTCR characteristics of low resistivity at room temperature ($122\;{\Omega}{\cdot}cm$), high resistivity jump ($1.28{\times}10^4$), high resistivity temperature factor (20.4%/$^{\circ}C$), and a high Tc of $157.9^{\circ}C$.

졸-겔 방법으로 $SiO_2/Si$ 기판 위에 제작된 (Bi,La)$Ti_3O_12$ 강유전체 박막의 특성 연구 (Characterization of (Bi,La)$Ti_3O_12$ Ferroelectric Thin Films on $SiO_2/Si$/Si Substrates by Sol-Gel Method)

  • 장호정;황선환
    • 마이크로전자및패키징학회지
    • /
    • 제10권2호
    • /
    • pp.7-12
    • /
    • 2003
  • 졸-겔(Sol-Gel)법으로 $SiO_2/Si$ 기판 위에 $Bi_{3.3}La_{0.7}O_{12}$(BLT) 강유전체 박막을 스핀코팅하여 Metal-Ferroelectric-Insulator-Silicon 구조의 캐패시터 소자를 제작하였다. 열처리하지 않은 BLT 박막시료를 $650^{\circ}C$$700^{\circ}C$의 온도에서 열처리함으로서 임의 배향을 가지는 퍼롭스카이트 결정구조를 나타내었다. 열처리 온도를 $650^{\circ}C$에서 $700^{\circ}C$로 증가시킴에 따라서 (117) 주피크의 full width at half maximum(FWHM)값이 약 $0.65^{\circ}$에서 $0.53^{\circ}$로 감소하여 결정성이 개선되었으며 결정립 크기와 $R_rms$ 값이 증가하면서 박막표면이 거칠어지는 경향을 보여주었다. $700^{\circ}C$에서 열처리한 BLT 박막시료에 대해 인가 전압에 따른 정전용량(C-V)값을 측정한 결과 5V의 인가전압에서 메모리 원도우 값이 약 0.7V를 보여주었으며, 3V의 인가전압에서 누설전류 값이 약 $3.1{\times}10^{-8}A/cm^2$을 나타내었다.

  • PDF

MnO2가 도핑된 무연 High Tc (>165℃) BaTiO3-(Bi0.5Na0.5)TiO3 세라믹의 PTCR 특성 향상 (Enhancement of PTCR Characteristics of MnO2 Doped Lead Free BaTiO3-(Bi0.5Na0.5)TiO3 Ceramics with High Tc (>165℃))

  • 김경범;장용호;김창일;정영훈;이영진;백종후;이우영;김대준
    • 한국전기전자재료학회논문지
    • /
    • 제24권9호
    • /
    • pp.723-727
    • /
    • 2011
  • 0.935Ba$TiO_3$-0.065($Bi_{0.5}Na_{0.5}$)$TiO_3+xmol%MnO_2$ (BBNTM-x) ceramics with $0{\leq}x{\leq}0.05$ were fabricated with muffled sintering by a modified synthesis process. Their microstructure and enhanced positive temperature coefficient of resistivity (PTCR) characteristics were systematically investigated in order to obtain lead-free high TC PTCR thermistors. All specimens showed a perovskite structure with a tetragonal symmetry and no secondary phase was observed. Grain growth was achieved when the doped MnO2 was increased above 0.02 mol%. This is due to the effect of positive Mn ion doping as an acceptor compensating a Ba vacancy occurred by the higher donor dopant concentration of $Bi^{3+}$ ion. Especially, enhanced PTCR characteristics of the extremely low ${\rho}_{RT}$ of $9\;{\Omega}{\cdot}cm$, PTCR jump of $5.1{\times}10^3$, ${\alpha}$ of 15.5%/$^{\circ}C$ and high $T_C$ of $167^{\circ}C$ were achieved for the BBNTM-0.04 ceramics.

Fe2O3첨가에 따른 (Na,K,Li)(Nb,Sb,Ta)O3계 세라믹스의 압전 및 유전 특성 (Piezoelectric and Dielectric Properties of (Na,K,Li)(Nb,Sb,Ta)O3 Ceramics as a Function of Fe2O3 Addition)

  • 이광민;신상훈;류주현
    • 한국전기전자재료학회논문지
    • /
    • 제27권9호
    • /
    • pp.555-560
    • /
    • 2014
  • In this paper, in order to develop outstanding Pb-free composition ceramics, the $Fe_2O_3$-doped ($Na_{0.525}K_{0.443}Li_{0.037}$)($Nb_{0.883}Sb_{0.08}Ta_{0.037}$)$O_3$ + 0.3 wt% $Bi_2O_3$ + x wt% $Fe_2O_3$ (x= 0~1.0 wt%)(abbreviated as NKL-NST) lead-free piezoelectric ceramics have been synthesized using the ordinary solid state reaction method. The effect of $Fe_2O_3$-doping on their microstructure and electrical properties were investigated. XRD diffraction pattern studies confirm that $Fe_2O_3$ completely diffused into the NKL-NST lattice to form a new stable soild solution with $Fe^{3+}$ entering the $Nb^{5+}$, $Sb^{5+}$ and $Ta^{5+}$ of B-site. And, phase structure of all the ceramics exhibited pure perovskite phase and no secondary phase was found in the ceramics. The ceramics doped with 0.6 wt% $Fe_2O_3$ have the optimum values of piezoelectric constant($d_{33}$), planar piezoelectric coupling coefficient($k_p$) and mechanical quality factor($Q_m$) : $d_{33}$ = 233 [pC/N], $k_p$= 0.44, $Q_m$= 95. These results indicate that the ($Na_{0.525}K_{0.443}Li_{0.037}$)($Nb_{0.883}Sb_{0.08}Ta_{0.037}$)$O_3$ +0.3 wt% $Bi_2O_3$ + 0.6 wt% $Fe_2O_3$ ceramic is a promising candidate for lead-free piezoelectric ceramics.