• Title/Summary/Keyword: Bi-matrix Game

Search Result 3, Processing Time 0.024 seconds

On the Bayesian Fecision Making Model of 2-Person Coordination Game (2인 조정게임의 베이지안 의사결정모형)

  • 김정훈;정민용
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.22 no.3
    • /
    • pp.113-143
    • /
    • 1997
  • Most of the conflict problems between 2 persons can be represented as a bi-matrix game, because player's utilities, in general, are non-zero sum and change according to the progress of game. In the bi-matrix game the equilibrium point set which satisfies the Pareto optimality can be a good bargaining or coordination solution. Under the condition of incomplete information about the risk attitudes of the players, the bargaining or coordination solution depends on additional elements, namely, the players' methods of making inferences when they reach a node in the extensive form of the game that is off the equilibrium path. So the investigation about the players' inference type and its effects on the solution is essential. In addition to that, the effect of an individual's aversion to risk on various solutions in conflict problems, as expressed in his (her) utility function, must be considered. Those kinds of incomplete information make decision maker Bayesian, since it is often impossible to get correct information for building a decision making model. In Baysian point of view, this paper represents an analytic frame for guessing and learning opponent's attitude to risk for getting better reward. As an example for that analytic frame. 2 persons'bi-matrix game is considered. This example explains that a bi-matrix game can be transformed into a kind of matrix game through the players' implicitly cooperative attitude and the need of arbitration.

  • PDF

A Discretization Algorithm for Bi-Matrix Game Approach to Power Market Analysis (전력시장 해석을 위한 Bi-matrix 게임의 이산화 알고리즘)

  • 이광호
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.1
    • /
    • pp.62-67
    • /
    • 2003
  • An important aspect of the study of power system markets involves the assessment of strategic behavior of participants for maximizing their profits. In models of imperfect competition of a deregulated electricity system, the key task is to find the Nash equilibrium. In this paper, the bimatrix approach for finding Nash equilibria in electricity markets is investigated. This approach determines pure and mixed equilibria using the complementarity pivot algorithim. The mixed equilibrium in the matrix approach has the equal number of non-zero property. This property makes it difficult to reproduce a smooth continuous distribution for the mixed equilibrium. This paper proposes an algorithm for adjusting the quantization value of discretization to reconstruct a continuous distribution from a discrete one.

Comparison between Cournot-Nash and Stackelberg Game in Bi-level Program (Bi-level program에서 Cournot-Nash게임과 Stackelberg게임의 비교연구)

  • Lim, Yong-Taek;Lim, Kang-Won
    • Journal of Korean Society of Transportation
    • /
    • v.22 no.7 s.78
    • /
    • pp.99-106
    • /
    • 2004
  • This paper presents some comparisons between Cournot-Nash and Stackelberg game in bi-level program, composed of both upper level program and lower level one. The upper level can be formulated to optimize a specific objective function, while the lower formulated to express travelers' behavior patterns corresponding to the design parameter of upper level problem. This kind of hi-level program is to determine a design parameter, which leads the road network to an optimal state. Bi-level program includes traffic signal control, traffic information provision, congestion charge and new transportation mode introduction as well as road expansion. From the view point of game theory, many existing algorithms for bi-level program such as IOA (Iterative Optimization Assignment) or IEA (Iterative Estimation Assignment) belong to Cournot-Nash game. But sensitivity-based algorithms belongs to Stackelberg one because they consider the reaction of the lower level program. These two game models would be compared by using an example network and show some results that there is no superiority between the models in deterministic case, but in stochastic case Stackelberg approach is better than that of Cournot-Nash one as we expect.