• Title/Summary/Keyword: Bi-Thin Film

Search Result 387, Processing Time 0.028 seconds

Flow sensor using stress-balanced membrane and thin film thermocouple (스트레스균형이 이루어진 멤버레인 및 박막 열전대를 응용한 유체센서)

  • Ahn, Yeong-Bae;Kim, Jin-Sup;Kim, Myung-Gyoo;Lee, Jong-Hyun;Lee, Jung-Hee
    • Journal of Sensor Science and Technology
    • /
    • v.5 no.6
    • /
    • pp.51-59
    • /
    • 1996
  • A flow sensor has been fabricated by preparing thin film Pt-heater and Bi-Sb thermocouples array on 150 nm-$Si_{3}N_{4}$/300 nm-$SiO_{2}$/150 nm-$Si_{3}N_{4}$ dielectric diaphragm which has low thermal conductivity and balanced stress with silicon substrate for the purpose of improving the thermal isolation between heater and silicon substrate. Pt-heater showed nonlinear I-V characteristics due to the thermal isolation effect of the diaphragm. Its temperature coefficient of resistance was about $0.00378\;/^{\circ}C$ and Seebeck coefficient of Bi-Sb thermocouple was about $97\;{\mu}V/K$. The sensor showed that thermoelectric voltage decreased as thermal conductivity of gas increased, and flow sensitivity increased as heater voltage increased or as the distance between heater and thermocouple decreased. When heater voltage was about 2.5 V, $N_{2}$-flow sensitivity and thermal response time of the sensor were about $1.27\;mV{\cdot}(sccm)^{-1/2}$ and 0.13 sec., respectively.

  • PDF

Control of Surface Energy using Bilayer Metallic Film Heterostructures

  • Kim, Chang-Lae;Kim, Dae-Eun;Kim, Hae-Jin
    • Tribology and Lubricants
    • /
    • v.35 no.6
    • /
    • pp.350-355
    • /
    • 2019
  • Surface energy is an important factor in determining the performance of application components in terms of preventing adhesion failure between thin films. In this regard, numerous attempts have been made to acquire the desired surface energy through chemical treatment or by using micro/nanostructures. However, such approaches are expected to provide extreme values of surface energy, which may not be suitable in achieving the enhanced performance of applications. In this study, we propose a method to control surface energy by using bilayer metallic film heterostructures. We measure the water contact angle of incompatible (Ni/Ag) and compatible (Zn/Ag) metal pairs under several experimental factors, including thickness, time, and temperature. Furthermore, we conduct Auger electron spectroscopy measurements to investigate the atomic concentration with respect to depth after the change in the water contact angle. The experimental results reveal that three parameters, namely, compatibility, film thickness, and environmental temperature, are major factors in controlling the water contact angle. Thus, we experimentally demonstrate that controlling these three parameters can provide the approximate desired water contact angle. This result is expected to aid in the performance enhancement of a wide range of application components, where control of surface energy is required.

A Study on the Change in the Film Thickness of Ball Bearing in Starved EHL (윤활유 부족 상태에서의 볼 베어링 유막 두께 변화에 대한 연구)

  • Jung, SoonBi;Lee, Bora;Yu, YongHun;Cho, YongJoo
    • Tribology and Lubricants
    • /
    • v.33 no.3
    • /
    • pp.119-125
    • /
    • 2017
  • In this study, we perform a numerical analysis to predict the film thickness and lubrication regions for a thrust ball bearing under different operating conditions. Film thinning and replenishment affect the film thickness in starved lubrication. As the inlet meniscus position is brought to the edge of the Hertz contact, the thin film thickness is calculated as starved equation. We use a film replenishment model to determine the recovery film thickness between rolling elements. We use a hydrodynamic model to describe film recovery, that results from the effects of surface tension. In this model, we consider the surface tension gradient in fluid depression as the driving force for fluid recovery. We use Fourier transform method to determine the time-dependent depth of depressed oil. We calculate the change in the central film thickness graphically by using the recovery equation in starved elastohydrodynamic lubrication(EHL) under operating conditions that include numbers of balls, sliding velocity, applied force, and ambient film thickness. We evaluate the degree of starvation by using the distance from the center of the contact area to the meniscus position. Parched lubrication, a phenomenon where the film thickness decreases consistently, occurs at the severe condition. We determine optimal values with respect to the numbers of balls, and sliding velocity. The investigation can contribute to the design operating conditions for proper lubrication.

Influence of Electron Irradiation on the Structural Electrical and Optical Properties of ITO/Ti bi-layered Films (전자빔 조사에 따른 In2O3/Ti 적층박막의 전기적, 광학적 특성 변화)

  • Moon, Hyun-Joo;Jeon, Jae-Hyun;Song, Young-Hwan;Oh, Jung-Hyun;Gong, Tae-Kyung;Choi, Dong-Hyuk;Son, Dong-Il;Kim, Daeil
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.28 no.6
    • /
    • pp.310-314
    • /
    • 2015
  • We have considered the influence of electron irradiation on the optical and electrical properties of $In_2O_3/Ti$ bi-layered films prepared with RF and DC magnetron sputtering. The $In_2O_3/Ti$ thin films irradiated at 600 eV shows the lowest resistivity of $6.9{\times}10^{-4}{\Omega}cm$. The optical transmittance in a visible wave length region also influenced with the electron irradiation energy. The film that electron irradiated at 600 eV shows 82.9% of optical transmittance in this study. By comparison of figure of merit, it is concluded that the opto-electrical performance of $In_2O_3/Ti$ bi-layered film is improved with electron irradiation.

Characteristics of superconducting fault current limiters with various pattern shape (초전도 전류제한기의 패턴형상별 특성)

  • Choi, H.S.;Chung, H.S.;Choi, C.J.;Lee, S.I.;Chung, S.B.;Oh, G.K.;Lim, S.H.;Han, B.S.;Chung, D.C.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.529-532
    • /
    • 2003
  • Quench behavior of resistive superconducting fault current limiters (SFCLs) with various pattern shapes was investigated. The pattern shapes employed were meander, bi-spiral, and spiral shapes of identical line width, gap and margin. SFCLs were fabricated from YBCO thin films grown on two-inch diameter $Al_2O_3$ substrates under the same conditions. Resistance rise of current limiting elements was low at a spiral shape before the whole quench completion, which may act as a disadvantage for simultaneous quench in serial connection between current limiting elements, but the temperature tended to have similar values at higher voltages. On the other hand, bi-spiral shape was severe at insulation level between current limiting lines. When these aspects were considered, we concluded that a meander shape was appropriate to design for a resistive SFCL based on thin films except the concentration of electric field at edge areas of strip lines.

  • PDF

Preparation of epitaxial bismuth titanate thin films by the sol-gel process (졸-겔법을 이용한 Epitaxial Bismuth Titanate 박막의 제조)

  • 김상복;이영환;윤연흠;황규석;오정선;김병훈
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.13 no.2
    • /
    • pp.56-62
    • /
    • 2003
  • Epitaxial $Bi_4Ti_3O_{12}$ films on $SrTiO_3$(100), L$aA1O_3$(100) and MgO(100) were prepared by sol-gel process using metal naphthenate as a starting material. As-deposited films were pyrolyzed at $500^{\circ}C$ for 10 min In air and annealed at $750^{\circ}C$ for 30 min in air. Crystallinity and in-plane alignment of the film were investigated by X-ray diffraction $\theta$-2$\theta$ scan and P scanning. A field emission-scanning electron microscope and an atomic force microscope were used for characterizing the surface morphology and the surface roughness of the film. The film prepared on MgO(100) showed the most poor crystallinity and in-plane alignment, compared to those on the other substrates. While the films on $LaA1O_3$(100) and $SrTiO_3$(100) having high crystallinity and in-plane alignment showed the form of columnar grain growth, the film on MgO(100) which had poor crystallinity showed the form of acicula grain growth.

The Surface Damage of SBT Thin Film Etched in Cl2CF4/Ar Plasma (Cl2CF4/Ar 유도결합 플라즈마에 의해 식각된 SBT 박막의 표면 손상)

  • 김동표;김창일;이철인;김태형;이원재;유병곤
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.7
    • /
    • pp.570-575
    • /
    • 2002
  • $SrBi_2Ta_2O_9$ thin films were etched in $Cl_2/CF_4/Ar$ inductively coupled plasma (ICP). The maximum etch rate was 1300 ${\AA}/min$ at 900 W ICP power in Cl$_2$(20%)/$CF_4$(20%)/Ar(60%). As RF source power increased, radicals (F, Cl) and ion ($Ar^+$) increased. The influence of plasma induced damage during etching process was investigated in terms of P-E hysteresis loops, chemical states on the surface, surface morphology and phase of X-ray diffraction. The chemical states on the etched surface were investigated with X-ray spectroscopy and secondary ion mass spectrometry. After annealing $700^{\circ}C$ for 1 h in $O_2$ atmosphere, the decreased P-E hysteresises of the etched SBT thin films in Ar and $Cl_2/CF_4/Ar$ plasma were recovered.

우수한 광투과도를 갖는 ZnO 기반의 투명박막트랜지스터 제작 및 특성 분석

  • Lee, Yeong-Min;Lee, Se-Jun;Lee, Jin-Yong;Kim, Hyeong-Jun;Ryu, Han-Tae;Kim, Deuk-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.204-204
    • /
    • 2010
  • 본 연구에서는 Glass 기판 위에 우수한 광 투과도를 갖는 ZnO 기반의 Thin Film Transistor (TFT)를 제작하였으며, 이에 대한 전기적 및 광학적 특성을 분석하였다. 소자 구조의 제작은 Maskless Aligner를 이용한 Optical lithograph법을 이용하였다. 채널층은 ZnO로 하였고 Source/Drain 영역은 GaZnO로 하여 전체구조가 ZnO 기반의 homogeneity를 유지하게 하였다. 이때 Gate 절연막은 Bi1.5Zn1Nb1.5O7와 SiO2 두가지 종류로 하여 각각의 특성을 비교하였다. 본연구에서 TFT구조의 각 층은 모두 r. f. 마그네트론 스퍼터법으로 증착하였다. 제작된 TFT들은 채널층 및 절연막 형성 등에 관여된 세부적 실험변수의 변화에 관계없이 약 75% 이상의 우수한 광투과도 특성을 보였다. 전기적 특성 평가에서, 제작된 TFT들은 전반적으로 비교적 낮은 문턱전압과 높은 이동도를 보였다. 하지만, 트랜지스터의 전기적 전송 특성의 주요 인자들인 채널-이동도, 스위칭, 누설 및 이력 등은 ZnO 채널층 혹은 Bi1.5Zn1Nb1.5O7 절연막 형성 시 주입되는 O2 가스의 분압에 의존하는 것이 관측되었다. 이를 통하여 트랜지스터의 각 세부 영역의 구조 및 형성 조건이 트랜지스터의 전기적 특성에 미치는 영향과 상관관계에 대하여 논의한다.

  • PDF

Fabrication and Sensor Properties of Garnet Thin Films for Magneto-Optic Electrical Current and Magnetic Field Sensor (광자기 전류 자장 센서용 가넷 박막의 제조 및 센서 특성)

  • 김덕실;조재경
    • Journal of the Korean Magnetics Society
    • /
    • v.8 no.2
    • /
    • pp.74-78
    • /
    • 1998
  • High quality single cystal Bi, Gd : YIG films have been grown on GCMZGG wafers by LPE techniques. The magnetic, magneto-optic and sensor properties of the films have been investigated. The films showed high linearity with almost no hystersis, saturaton Faraday rotation angle of 45$^{\circ}$, saturation field of about 1.1 kOe, Verdet constant of 5.6$^{\circ}$ /(Oe, cm) at room temperature, and temperture coefficient of Verset constant of 0.0056$^{\circ}$ /(Oe, cm, $^{\circ}C$) in the range of 0 $^{\circ}C$~100 $^{\circ}C$. The sensor made out of the film exhibited highly linear signal in the range of 3 A-300 A.

  • PDF

Degradation from Polishing Damage in Ferroelectric Characteristics of BLT Capacitor Fabricated by Chemical Mechanical Polishing Process (화학적기계적연마 공정으로 제조한 BLT Capacitor의 Polishing Damage에 의한 강유전 특성 열화)

  • Na, Han-Yong;Park, Ju-Sun;Jung, Pan-Gum;Ko, Pil-Ju;Kim, Nam-Hoon;Lee, Woo-Sun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.236-236
    • /
    • 2008
  • (Bi,La)$Ti_3O_{12}$(BLT) thin film is one of the most attractive materials for ferroelectric random access memory (FRAM) applications due to its some excellent properties such as high fatigue endurance, low processing temperature, and large remanent polarization [1-2]. The authors firstly investigated and reported the damascene process of chemical mechanical polishing (CMP) for BLT thin film capacitor on behalf of plasma etching process for fabrication of FRAM [3]. CMP process could prepare the BLT capacitors with the superior process efficiency to the plasma etching process without the well-known problems such as plasma damages and sloped sidewall, which was enough to apply to the fabrication of FRAM [2]. BLT-CMP characteristics showed the typical oxide-CMP characteristics which were related in both pressure and velocity according to Preston's equation and Hernandez's power law [2-4]. Good surface roughness was also obtained for the densification of multilevel memory structure by CMP process [3]. The well prepared BLT capacitors fabricated by CMP process should have the sufficient ferroelectric properties for FRAM; therefore, in this study the electrical properties of the BLT capacitor fabricated by CMP process were analyzed with the process parameters. Especially, the effects of CMP pressure, which had mainly affected the removal rate of BLT thin films [2], on the electrical properties were investigated. In order to check the influences of the pressure in eMP process on the ferroelectric properties of BLT thin films, the electrical test of the BLT capacitors was performed. The polarization-voltage (P-V) characteristics show a decreased the remanent polarization (Pr) value when CMP process was performed with the high pressure. The shape of the hysteresis loop is close to typical loop of BLT thin films in case of the specimen after CMP process with the pressures of 4.9 kPa; however, the shape of the hysteresis loop is not saturated due to high leakage current caused by structural and/or chemical damages in case of the specimen after CMP process with the pressures of 29.4 kPa. The leakage current density obtained with positive bias is one order lower than that with negative bias in case of 29.4 kPa, which was one or two order higher than in case of 4.9 kPa. The high pressure condition was not suitable for the damascene process of BLT thin films due to the defects in electrical properties although the better efficiency of process. by higher removal rate of BLT thin films was obtained with the high pressure of 29.4 kPa in the previous study [2].

  • PDF