• Title/Summary/Keyword: Bi-Linear Interpolation

Search Result 23, Processing Time 0.023 seconds

Adopting and Implementation of Decision Tree Classification Method for Image Interpolation (이미지 보간을 위한 의사결정나무 분류 기법의 적용 및 구현)

  • Kim, Donghyung
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.16 no.1
    • /
    • pp.55-65
    • /
    • 2020
  • With the development of display hardware, image interpolation techniques have been used in various fields such as image zooming and medical imaging. Traditional image interpolation methods, such as bi-linear interpolation, bi-cubic interpolation and edge direction-based interpolation, perform interpolation in the spatial domain. Recently, interpolation techniques in the discrete cosine transform or wavelet domain are also proposed. Using these various existing interpolation methods and machine learning, we propose decision tree classification-based image interpolation methods. In other words, this paper is about the method of adaptively applying various existing interpolation methods, not the interpolation method itself. To obtain the decision model, we used Weka's J48 library with the C4.5 decision tree algorithm. The proposed method first constructs attribute set and select classes that means interpolation methods for classification model. And after training, interpolation is performed using different interpolation methods according to attributes characteristics. Simulation results show that the proposed method yields reasonable performance.

IMPLEMENTATION OF IMMERSED BOUNDARY METHOD TO INCOMPRESSIBLE NAVIER-STOKES SOLVER USING SIMPLE ALGORITHM (SIMPLE Algorithm기반의 비압축성 Navier-Stokes Solver와 Immersed Boundary Method)

  • Kim, G.H.;Park, S.O.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.397-403
    • /
    • 2010
  • The Immersed boundary method(IBM) is one of CFD techniques which can simulate flow field around complex objectives using simple Cartesian grid system. In the previous studies the IBM has mostly been implemented to fractional step method based Navier-Stokes solvers. In these cases, pressure buildup near IB was found to occur when linear interpolation and stadard mass conservation is used and the interpolation scheme became complicated when higher order of interpolation is adopted. In this study, we implement the IBM to an incompressible Navier-Stokes solver which uses SIMPLE algorithm. Bi-linear and quadratic interpolation equations were formulated by using only geometric information of boundary to reconstruct velocities near IB. Flow around 2D circular cylinder at Re=40 and 100 was solved by using these formulations. It was found that the pressure buildup was not observed even when the bi-linear interpolation was adopted. The use of quadratic interpolation made the predicted aerodynamic forces in good agreement with those of previous studies.

  • PDF

Real-Time Continuous-Scale Image Interpolation with Directional Smoothing (방향적응적인 연속 비율 실시간 영상 보간 방식 -방향별 가우시안 필터를 사용한 연속 비율 지원 영상 보간 필터-)

  • Yoo, Yoon-Jong;Jun, Sin-Young;Maik, Vivek;Paik, Joon-Ki
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.615-619
    • /
    • 2009
  • A real-time, continuous-scale image interpolation method is proposed based on bi-linear interpolation with directionally adaptive low-pass filtering. The proposed algorithm has been optimized for hardware implementation. The original bi-linear interpolation method has blocking artifact. The proposed algorithm solves this problem using directionally adaptive low-pass filtering. It can also solve the severely problem by selection choosing low-pass filter coefficients. Therefore the proposed interpolation algorithm can realize a high-quality image scaler for various imaging systems, such as digital camera, CCTV and digital flat panel display, to name a few.

  • PDF

Non-Local Mean based Post Processing Scheme for Performance Enhancement of Image Interpolation Method (이미지 보간기법의 성능 개선을 위한 비국부평균 기반의 후처리 기법)

  • Kim, Donghyung
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.16 no.3
    • /
    • pp.49-58
    • /
    • 2020
  • Image interpolation, a technology that converts low resolution images into high resolution images, has been widely used in various image processing fields such as CCTV, web-cam, and medical imaging. This technique is based on the fact that the statistical distributions of the white Gaussian noise and the difference between the interpolated image and the original image is similar to each other. The proposed algorithm is composed of three steps. In first, the interpolated image is derived by random image interpolation. In second, we derive weighting functions that are used to apply non-local mean filtering. In the final step, the prediction error is corrected by performing non-local mean filtering by applying the selected weighting function. It can be considered as a post-processing algorithm to further reduce the prediction error after applying an arbitrary image interpolation algorithm. Simulation results show that the proposed method yields reasonable performance.

Reconstruction of 3D Volume of Talairach Brain Atlas (Talairach 뇌지도의 3차원 볼륨 재구성)

  • 백철화;김태우
    • Journal of Biomedical Engineering Research
    • /
    • v.20 no.4
    • /
    • pp.409-417
    • /
    • 1999
  • Talairach atlas consists of three orthogonal sets of coronal, sagittal, and axial slices. This atlas has recently an important role as a standard brain atlas in diagnosing disease related with brain function and analyzing cause of brain disease. The 3D digital volume data set reconstructed from the atlas is widely applied to visualization and quantitative analysis of results processed in the digital computer. This paper represented application method of bi-linear interpolation technique, proposed tri-planar interpolation algorithm for 3D volume data reconstruction of Talairach atlas. And we implemented Talairach atlas editor and discussed problems in volume reconstruction of Talairach atlas. The bi-linear method was applied to only one set of the slices and considered the on intensity value in the interpolation process. The tri-planar technique concurrently uses three orthogonal sets of slices with the same information of brain structures. Talairach atlas editor visualized three sets. of atlas slices on the same coordinate and had editing function. Using the atlas editor, we represented problems in volume reconstruction by showing inconsistency of brain structures among three sets of atlas slices.

  • PDF

IMPLEMENTATION OF IMMERSED BOUNDARY METHOD TO INCOMPRESSIBLE NAVIER-STOKES SOLVER USING SIMPLE ALGORITHM (SIMPLE Algorithm기반의 비압축성 Navier-Stokes Solver를 이용한 Immersed Boundary Method의 적용)

  • Kim, G.H.;Park, S.O.
    • Journal of computational fluids engineering
    • /
    • v.17 no.1
    • /
    • pp.44-53
    • /
    • 2012
  • Immersed boundary method(IBM) is a numerical scheme proposed to simulate flow field around complex objectives using simple Cartesian grid system. In the previous studies, the IBM has mostly been implemented to fractional step method based Navier-Stokes solvers. In this study, we implement the IBM to an incompressible Navier-Stokes solver which uses SIMPLE algorithm. The weight coefficients of the bi-linear and quadratic interpolation equations were formulated by using only geometric information of boundary to reconstruct velocities near IB. Flow around 2D circular cylinder at Re=40 and 100 was solved by using these formulations. It was found that the pressure buildup was not observed even when the bi-linear interpolation was adopted. The use of quadratic interpolation made the predicted aerodynamic forces in good agreement with those of previous studies. For an analysis of moving boundary, we smulated an oscillating circular cylinder with Re=100 and KC(Keulegan-Carpenter) number of 5. The predicted flow fields were compared with experimental data and they also showed good agreements.

Real-Time Continuous-Scale Image Interpolation with Directional Smoothing

  • Yoo, Yoonjong;Shin, Jeongho;Paik, Joonki
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.3 no.3
    • /
    • pp.128-134
    • /
    • 2014
  • A real-time, continuous-scale image interpolation method is proposed based on a bilinear interpolation with directionally adaptive low-pass filtering. The proposed algorithm was optimized for hardware implementation. The ordinary bi-linear interpolation method has blocking artifacts. The proposed algorithm solves this problem using directionally adaptive low-pass filtering. The algorithm can also solve the severe blurring problem by selectively choosing low-pass filter coefficients. Therefore, the proposed interpolation algorithm can realize a high-quality image scaler for a range of imaging systems, such as digital cameras, CCTV and digital flat panel displays.

Implementation of Look-Up Table for Quasi-Bi-Quadratic Interpolation Based on Least Square Approximation for LCD Displays (LCD 디스플레이 구동을 위한 최소 자승 근사에 의한 Quasi-Bi-Quadratic 보간법의 LUT 구현)

  • Park, Hee-Bum;Lee, Chul-Hee
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.425-426
    • /
    • 2006
  • Overdriving schemes are used to improve the response time of liquid crystal display. Typically they are implemented by using LUTs (look-up table) within an image processor. However, the size of LUT is limited by the physical memory size and system cost. In this paper, we present an improved method for LUT implementation using linear interpolation and piecewise least-square polynomial regression. Using the proposed method, the performance of LUT can be improved and memory size of that can be reduced.

  • PDF

A Study on the Determination of WGS84 Geoidal Height by the Interpolation Methods (보간방법에 의한 WGS84 지오이드고 결정에 관한 연구)

  • 강준묵;김홍진
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.13 no.2
    • /
    • pp.237-244
    • /
    • 1995
  • In this study, we made WGS84 geoidal height model from GPS measurements for bench marks and calculated geoidal height of B.Ms which were selected check points using the hi-linear, trend surface fitting and triangulation interpolation method. From these, the interpolation accuracy was studied. Also, we tried to study accuracy of height transformation by making up orthometric height with latitude and longitude on Bessel ellipsoid for bench marks which were calculated by applying transformation parameters that were got GPS measurements for precise primary control stations. As a result of this study, the WGS84 geoidal height and orthometric height could be determined as a deviation value of 20 cm.

  • PDF

Frame-rate Up-conversion using Hierarchical Adaptive Search and Bi-directional Motion Estimation (계층적 적응적 탐색과 양방향 움직임 예측을 이용한 프레임율 증가 방법)

  • Min, Kyung-Yeon;Park, Sea-Nae;Sim, Dong-Gyu
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.3
    • /
    • pp.28-36
    • /
    • 2009
  • In this paper, we propose a frame-rate up-conversion method for temporal quality enhancement. The proposed method adaptively changes search range during hierarchical motion estimation and reconstructs hole regions using the proposed bi-direction prediction and linear interpolation. In order to alleviate errors due to inaccurate motion vector estimation, search range is adaptively changed based on reliability and for more accurate, motion estimation is performed in descending order of block variance. After segmentation of background and object regions, for filling hole regions, the pixel values of background regions are reconstructed using linear interpolation and those of object regions are compensated based on the proposed hi-directional prediction. The proposed algorithm is evaluated in terms of PSNR with original uncompressed sequences. Experimental results show that the proposed algorithm is better than conventional methods by around 2dB, and blocky artifacts and blur artifacts are significantly diminished.