• Title/Summary/Keyword: Beta integral

Search Result 119, Processing Time 0.021 seconds

HYPONORMAL SINGULAR INTEGRAL OPERATORS WITH CAUCHY KERNEL ON L2

  • Nakazi, Takahiko
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.3
    • /
    • pp.787-798
    • /
    • 2018
  • For $1{\leq}p{\leq}{\infty}$, let $H^p$ be the usual Hardy space on the unit circle. When ${\alpha}$ and ${\beta}$ are bounded functions, a singular integral operator $S_{{\alpha},{\beta}}$ is defined as the following: $S_{{\alpha},{\beta}}(f+{\bar{g}})={\alpha}f+{\beta}{\bar{g}}(f{\in}H^p,\;g{\in}zH^p)$. When p = 2, we study the hyponormality of $S_{{\alpha},{\beta}}$ when ${\alpha}$ and ${\beta}$ are some special functions.

SOME INTEGRAL TRANSFORMS AND FRACTIONAL INTEGRAL FORMULAS FOR THE EXTENDED HYPERGEOMETRIC FUNCTIONS

  • Agarwal, Praveen;Choi, Junesang;Kachhia, Krunal B.;Prajapati, Jyotindra C.;Zhou, Hui
    • Communications of the Korean Mathematical Society
    • /
    • v.31 no.3
    • /
    • pp.591-601
    • /
    • 2016
  • Integral transforms and fractional integral formulas involving well-known special functions are interesting in themselves and play important roles in their diverse applications. A large number of integral transforms and fractional integral formulas have been established by many authors. In this paper, we aim at establishing some (presumably) new integral transforms and fractional integral formulas for the generalized hypergeometric type function which has recently been introduced by Luo et al. [9]. Some interesting special cases of our main results are also considered.

Integral Operator of Analytic Functions with Positive Real Part

  • Frasin, Basem Aref
    • Kyungpook Mathematical Journal
    • /
    • v.51 no.1
    • /
    • pp.77-85
    • /
    • 2011
  • In this paper, we introduce the integral operator $I_{\beta}$($p_1$, ${\ldots}$, $p_n$; ${\alpha}_1$, ${\ldots}$, ${\alpha}_n$)(z) analytic functions with positive real part. The radius of convexity of this integral operator when ${\beta}$ = 1 is determined. In particular, we get the radius of starlikeness and convexity of the analytic functions with Re {f(z)/z} > 0 and Re {f'(z)} > 0. Furthermore, we derive sufficient condition for the integral operator $I_{\beta}$($p_1$, ${\ldots}$, $p_n$; ${\alpha}_1$, ${\ldots}$, ${\alpha}_n$)(z) to be analytic and univalent in the open unit disc, which leads to univalency of the operators $\int\limits_0^z(f(t)/t)^{\alpha}$dt and $\int\limits_0^z(f'(t))^{\alpha}dt$.

ON INTEGRAL GRAPHS WHICH BELONG TO THE CLASS $\bar{{\alpha}K_{a,a}\cup{\beta}K_{b,b}}$

  • LEPOVIC MIRKO
    • Journal of applied mathematics & informatics
    • /
    • v.20 no.1_2
    • /
    • pp.61-74
    • /
    • 2006
  • Let G be a simple graph and let G denote its complement. We say that $\bar{G}$ is integral if its spectrum consists of integral values. In this work we establish a characterization of integral graphs which belong to the class $\bar{{\alpha}K_{a,a}\cup{\beta}K_{b,b}}$, where mG denotes the m-fold union of the graph G.

New Sufficient Conditions for Starlikeness of Certain Integral Operator

  • Mishra, Akshaya Kumar;Panigrahi, Trailokya
    • Kyungpook Mathematical Journal
    • /
    • v.55 no.1
    • /
    • pp.109-118
    • /
    • 2015
  • In the present paper, a new analytic function valued integral operator is introduced which is defined on n-copies of a subset of the class of normalized analytic functions on the unit disc of the complex plane. This operator, which is denoted here by $\mathfrak{J}^{{\alpha}_i,{\beta}_i}(f_1,{\ldots},f_n)$, unifies and generalizes several integral operators studied earlier. Interesting sufficient conditions are derived for the univalent starlikeness of $\mathfrak{J}^{{\alpha}_i,{\beta}_i}(f_1,{\ldots},f_n)$.

CERTAIN NEW EXTENSION OF HURWITZ-LERCH ZETA FUNCTION

  • KHAN, WASEEM A.;GHAYASUDDIN, M.;AHMAD, MOIN
    • Journal of applied mathematics & informatics
    • /
    • v.37 no.1_2
    • /
    • pp.13-21
    • /
    • 2019
  • In the present research paper, we introduce a further extension of Hurwitz-Lerch zeta function by using the generalized extended Beta function defined by Parmar et al.. We investigate its integral representations, Mellin transform, generating functions and differential formula. In view of diverse applications of the Hurwitz-Lerch Zeta functions, the results presented here may be potentially useful in some related research areas.

Integral operators that preserve the subordination

  • Bulboaca, Teodor
    • Bulletin of the Korean Mathematical Society
    • /
    • v.34 no.4
    • /
    • pp.627-636
    • /
    • 1997
  • Let $H(U)$ be the space of all analytic functions in the unit disk $U$ and let $K \subset H(U)$. For the operator $A_{\beta,\gamma} : K \longrightarrow H(U)$ defined by $$ A_{\beta,\gamma}(f)(z) = [\frac{z^\gamma}{\beta + \gamma} \int_{0}^{z} f^\beta (t)t^{\gamma-1} dt]^{1/\beta} $$ and $\beta,\gamma \in C$, we determined conditions on g(z), $\beta and \gamma$ such that $$ z[\frac{z}{f(z)]^\beta \prec z[\frac{z}{g(z)]^\beta implies z[\frac{z}{A_{\beta,\gamma}(f)(z)]^\beta \prec z[\frac{z}{A_{\beta,\gamma}(g)(z)]^\beta $$ and we presented some particular cases of our main result.

  • PDF

Certain Fractional Integral Operators and Extended Generalized Gauss Hypergeometric Functions

  • CHOI, JUNESANG;AGARWAL, PRAVEEN;JAIN, SILPI
    • Kyungpook Mathematical Journal
    • /
    • v.55 no.3
    • /
    • pp.695-703
    • /
    • 2015
  • Several interesting and useful extensions of some familiar special functions such as Beta and Gauss hypergeometric functions and their properties have, recently, been investigated by many authors. Motivated mainly by those earlier works, we establish some fractional integral formulas involving the extended generalized Gauss hypergeometric function by using certain general pair of fractional integral operators involving Gauss hypergeometric function $_2F_1$, Some interesting special cases of our main results are also considered.

THE BRIOT-BOUQUET DIFFERENTIAL SUBORDINATION ASSOCIATED WITH VERTICAL STRIP DOMAINS

  • Sim, Young Jae;Kwon, Oh Sang
    • Honam Mathematical Journal
    • /
    • v.39 no.4
    • /
    • pp.503-514
    • /
    • 2017
  • For real parameters ${\alpha}$ and ${\beta}$ such that ${\alpha}$ < 1 < ${\beta}$, we denote by $\mathcal{P}({\alpha},{\beta})$ the class of analytic functions p, which satisfy p(0) = 1 and ${\alpha}$ < ${\Re}\{p(z)\}$ < ${\beta}$ in ${\mathbb{D}}$, where ${\mathbb{D}}$ denotes the open unit disk. Let ${\mathcal{A}}$ be the class of analytic functions in ${\mathbb{D}}$ such that f(0) = 0 = f'(0) - 1. For $f{\in}{\mathcal{A}}$, ${\mu}{\in}{\mathbb{C}}{\backslash}\{0\}$ and ${\nu}{\in}{\mathbb{C}}$, let $I_{{\mu},{\nu}:{\mathcal{A}}{\rightarrow}{\mathcal{A}}$ be an integral operator defined by $$I_{{\mu},{\nu}[f](z)}=\({\frac{{\mu}+{\nu}}{z^{\nu}}}{\int}^z_0f^{\mu}(t)t^{{\nu}-1}dt\)^{1/{\mu}}$$. In this paper, we find some sufficient conditions on functions to be in the class $\mathcal{P}({\alpha},{\beta})$. One of these results is applied to the integral operator $I_{{\mu},{\nu}}$ of two classes of starlike functions which are related to the class $\mathcal{P}({\alpha},{\beta})$.

THE LAW OF A STOCHASTIC INTEGRAL WITH TWO INDEPENDENT BIFRACTIONAL BROWNIAN MOTIONS

  • Liu, Junfeng
    • Communications of the Korean Mathematical Society
    • /
    • v.26 no.4
    • /
    • pp.669-684
    • /
    • 2011
  • In this note, we obtain the expression of the characteristic fucntion of the random variable $\int_o^TB_s^{{\alpha},{\beta}}dB_s^{H,K}$, where $B^{{\alpha},{\beta}}$ and $B^{H,K}$ are two independent bifractional Brownian motions with indices ${\alpha}{\in}(0,1),{\beta}{\in}(0, 1]$ and $HK{\in}(\frac{1}{2},\;1)$ respectively.