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THE LAW OF A STOCHASTIC INTEGRAL WITH TWO

INDEPENDENT BIFRACTIONAL BROWNIAN MOTIONS

Junfeng Liu

Abstract. In this note, we obtain the expression of the characteris-

tic fucntion of the random variable
∫ T
0 Bα,β

s dBH,K
s , where Bα,β and

BH,K are two independent bifractional Brownian motions with indices
α ∈ (0, 1), β ∈ (0, 1] and HK ∈ ( 1

2
, 1), respectively.

1. Introduction

Given H ∈ (0, 1),K ∈ (0, 1]. The bifractional Brownian motion is a gen-
eralization of fractional brownian motion, defined as a centered self-similar

Gaussian process BH,K =
{
BH,K

t , t ≥ 0
}

with indices H and K and covari-

ance function

(1.1) E
[
BH,K

t BH,K
s

]
=

1

2K

[(
t2H + s2H

)K − |t− s|2HK
]
, ∀s, t ≥ 0.

It is HK-self-similar and satisfies the following estimates

(1.2) 2−K |t− s|2HK ≤ E

[(
BH,K

t −BH,K
s

)2]
≤ 21−K |t− s|2HK .

Clearly, if K = 1, the process is a fractional Brownian motion with Hurst
parameter H. This process was first introduced by Houdré and Villa [7]. Russo
and Tudor [16] have established some properties on the strong variations, local
times and stochastic calculus of real-valued bifractional Brownian motion. An
interesting property that deserves to be recalled is the fact that, when HK =
1
2 , the quadratic variation of this process on [0, t] is equal to 21−Kt. Tudor-
Xiao [17] studied some sample path properties of bifractional Brownian motion.
Itô’s formula and Tanaka formula for multidimensional bifractional Brownian
motion were given by Es-sebaiy and Tudor [6].

Clearly BH,K is neither a Markov process nor a semimartingale unlessH = 1
2

and K = 1, so many of the powerful techniques from stochastic analysis are not
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available when dealing with BH,K . However it has some properties analogous
to those of fractional Brownian motion, but its increments are not stationary.
In this note we consider the law of the stochastic integral∫ T

0

Bα,β
s dBH,K

s ,

where Bα,β and BH,K are two independent bi-fBm with α ∈ (0, 1), β ∈ (0, 1]
and 2HK > 1.

We have known that it is difficult to compute the law of a stochastic integral
with respect to the Wiener process when the integrand is not deterministic. The
systematic study for this problem was initiated in Lévy [12]. He showed that

the characteristic function of At =
∫ t

0
XsdYs −

∫ t

0
YsdXs is

E
(
eiuAt

)
=

1

cosh(ut)
, t ≥ 0, u ∈ R,

where (Xt, Yt) is an R2-valued Brownian motion with (X0, Y0) = (0, 0). This is
called Lévy’s stochastic area formula. Berthuet [3] and Yor [19] (see also Prot-
ter [15]) gave the other proof, and considered the law of the random variables

λ

∫ t

0

XsdYs + ρ

∫ t

0

YsdXs, t ≥ 0.

Moreover the density function for the distribution of A(t) is

fA(t)(x) =
1

2t cosh(πx/2t)
, x ∈ R.

The stochastic area process A shares some of properties of Brownian motion.
For example A satisfies a reflection principle. If one changes the sign of the
increments of A after a stopping time, the process obtained thereby has the
same distribution as that of A. One can use this fact to show, for example, that
if St = sup0≤s≤tA(s), then St has the same distribution as |A(t)| for t > 0.

As an extension, recently, Bardina-Tudor [2] considered a similar integral
driven by fractional Brownian motions, and they obtained the characteristic

function of the random variable S =
∫ 1

0
Bα

s dB
H
s , where Bα and BH are two

independent fractional Brownian motions with Hurst indexes α ∈ (0, 1) and
H ∈ ( 12 , 1), respectively. As well-known, in recent years, the long-range de-
pendence have attracted much attention, both for their mathematical interest
and their applications in stochastic control in telecommunication, turbulence,
finance and etc. The best known and most-used process that exhibits long-
range dependence is the fractional Brownian motion (fBm for short). These
due to its interesting properties and its applications in various scientific areas
including telecommunications, turbulence, image processing and finance. The
self-similarity and stationarity of the increments are two main properties for
which fractional Brownian motion enjoyed success as a modeling tool. The
fractional Brownian motion is the only continuous Gaussian process which is
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self-similar and has stationary increments. Some surveys and complete litera-
tures could be found in Alós et al. [1], Biagini et al. [4], Hu [8], Mishura [13],
Nualart [14]. However, contrast to the extensive studies on fractional Brown-
ian motion, there has been little systematic investigation on other self-similar
Gaussian processes. The main reasons for this are the complexity of depen-
dence structures and the non-availability of convenient stochastic integral rep-
resentations for self-similar Gaussian processes which do not have stationary
increments. On the other hand, many authors have proposed to use more
general self-similar Gaussian processes and random fields as stochastic models,
and such applications have raised many interesting theoretical questions about
self-similar Gaussian processes and fields in general. Thus, it seems interest-
ing to study the law of stochastic integrals driven by more general self-similar
Gaussian processes.

This note is organized as follows. In Section 2 we present some preliminaries
for bi-fBm and the Wiener integral with respect to bi-fBm. In Section 3 we

obtained the characteristic function of stochastic integral
∫ T

0
Bα,β

t dBH,K
t . The

case of two-parameter is considered in Section 4.

2. Preliminaries on bifBm and Wiener integral

In this section, we briefly recall some basic definitions and results of bifrac-
tional Brownian motion. As we have pointed out before, bifractional Brownian
motion (bifBm in short) BH,K =

{
BH,K

t , 0 ≤ t ≤ T
}
, on the probability space

(Ω,F , P ) with indices H ∈ (0, 1) and K ∈ (0, 1] is a rather special class of

self-similar Gaussian processes such that BH,K
0 = 0 and

(2.1)

E
[
BH,K

t BH,K
s

]
= RH,K(t, s) :=

1

2K

[(
t2H + s2H

)K − |t− s|2HK
]
, ∀s, t ≥ 0.

The process was first introduced by Houdré and Villa in [7] and a stochastic
calculus can be found in [17]. It is HK-self similar and satisfies the following
estimates (the quasi-helix property in the sense of R. Klein et al. [9])

(2.2) 2−K |t− s|2HK ≤ E

[(
BH,K

t −BH,K
s

)2]
≤ 21−K |t− s|2HK .

Thus, Kolmogorov’s continuity criterion implies that bifractional Brownian mo-
tion is Hölder continuous of order δ strictly less than HK. An interesting
property is that the quadratic covariation of this process on [0, t] equals to
21−Kt provided 2HK = 1. Recently, Lei-Nualart [11] have shown a decom-
position of the bifractional Brownian motion with parameters H and K into
the sum of a fractional Brownian motion with Hurst index HK plus a Gauss-
ian process with absolutely continuous trajectories. Russo-Tudor [16] showed
that the bifractional Brownian motion behaves as a fractional Brownian motion
with Hurst index HK. The stochastic calculus with respect to the bifractional
Brownian motion has been recently developed by Kruk-Russo-Tudor [10] by
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combining Mallavin Calculus and a notion of Covariance Measure Structure.
More works on bifractioal Brownian motion can be found in Tudor-Xiao [17],
Es-sabaiy-Tudor [6], Yan et al. [18] and the references therein.

Consider E the class of step functions of the form

(2.3) f =

n∑
j=1

aj1[tj−tj−1), 0 = t0 < t1 < t2 < · · · < tn = T, aj ∈ R.

We denote byHH,K the canonical space of the bifractional Brownian motion.
That is HH,K is the completion of the linear space E generated by the indicator
functions {1[0,t], t ∈ [0, T ]} with respect to the inner product

(2.4) ⟨1[0,s], 1[0,t]⟩HH,K
= RH,K(s, t).

HH,K now is a Hilbert space equipped with the scalar product ⟨1[0,s], 1[0,t]⟩HH,K .
The structure of the Hilbert space HH,K varies upon the values of H and K.
As usual, we can define the linear application

Φ : E → L2(Ω,F , P )
by

(2.5) 1[0,t] 7→ Φ(1[0,t]) =

∫ T

0

1[0,t](s)dB
H,K
s ≡ BH,K

t .

The application can be extended to a linear isometry between HH,K and the
Gaussian space associated with BH,K . We will denote the isometry by φ →
BH,K(φ) and let

ϕH,K(s, t) =
2HK

2K
[
2H(K − 1)(t2H + s2H)K−2t2H−1s2H−1

+(2HK − 1)|t− s|2HK−2
]
.

(2.6)

From Yan et al. [18] ,we know that there exist two positive constants CH,K

and cH,K such that

(2.7) cH,K |t− s|2HK−2 ≤
∣∣ϕH,K(s, t)

∣∣ ≤ CH,K |t− s|2HK−2.

We call BH,K(φ) :=
∫ T

0
φ(t)dBH,K

t the Wiener integral of φ with respect to

BH,K
t .
However working with the space HH,K is not convenient. First, because it

may also contain distribution (in the case of fractional Brownian motion when
K = 1) and second, because the norm in this space is not always tractable. We
will use the subspace |H|H,K of HH,K which is defined as the set of measurable
function f on the interval [0, T ] with

∥f∥2|H|H,K
:=

∫ T

0

∫ T

0

|f(s)||f(r)| |ϕH,K(s, r)| drds <∞.

From Kruk et al. [10], we know the space |H|H,K is a Banach space with respect
to the norm || · |||H|H,K

and it is included in the space HH,K .
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It has been proved in Kurk et al. [10] that E is dense in HH,K . For 1
2 <

HK < 1 we denote by S the set of smooth functionals of the form

F = f
(
BH,K(φ1), . . . , B

H,K(φn)
)
,

where f ∈ C∞
b (Rn) and φi ∈ HH,K . The Malliavin derivative of a functional

F as above is given by

DHF =

n∑
i=1

∂f

∂xi

(
BH,K(φ1), . . . , B

H,K(φn)
)
φi,

and this operator can be extended to the closure Dm,2(m ≥ 1) of S with respect
to the norm

∥F∥2m,2 ≡ E|F |2 + E∥DH,KF∥2HH,K
+ · · ·+ E∥DH,K,mF∥2

H
⊗̂

,m
H,K

,

where H
⊗̂

m
H,K denotes the m fold symmetric tensor product and the m-th de-

rivative DH,K,m is defined by iteration. The divergence integral δH,K is the
adjoint operator of DH,K . Concretely, a random variable u ∈ L2(Ω,HH,K)
belongs to the domain of the divergence operator δH,K (in symbol Dom(δH))
if

E
∣∣⟨DH,KF, u⟩HH,K

∣∣ ≤ c∥F∥L2(Ω)

for every F ∈ S. In this case δH,K(u) is given by the duality relationship

E(FδH,K(u)) = E⟨DH,KF, u⟩HH,K

for any F ∈ D1,2, and we have the following integration by parts:

(2.8) FδH,K(u) = δH,K(Fu) + ⟨DH,KF, u⟩HH,K

for any u ∈ Dom(δH), F ∈ D1,2 such that Fu ∈ L2(Ω,HH,K). It follows that

E
[
δH,K(u)2

]
= E∥u∥2HH,K

+ E⟨DHu, (DH,Ku)∗⟩HH,K⊗HH,K
,

where (DH,Ku)∗ is the adjoint of DH,Ku in the Hilbert space HH,K ⊗HH,K .
We also will use the notation

δH,K(u) =

∫ T

0

usdB
H,K
s ,

to express the Skorohod integral of an adapted process u. It is also possible to
introduce multiple integrals In(fn), fn ∈ H⊗n

H,K with respect to BH,K . For the

divergence integral we have the following convergence: if {un} is a sequence of
elements in Dom(δH,K) such that un → u in L2(Ω;HH,K), and δH,K(un) → G
in L2(Ω), then we have u ∈ Dom(δH) and δH,K(u) = G.

Clearly, for any φ ∈ HH,K the the Wiener integral with respect to BH,K

can be defined as

(2.9)

∫ T

0

φ(s)dBH,K
s = lim

n→∞

n∑
j=1

φ(sj)
(
BH,K

sj −BH,K
sj−1

)
,
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where {0=s0, s1, . . . , sn=T} is a partition of [0, T ] such that maxi{|si+1−si|}→
0, as n tends to infinity. In fact, denote In =

∑n
j=1 φ(sj)

(
BH,K

sj −BH,K
sj−1

)
,

according to (2.8),we have

In =
n∑

j=1

φ(sj)
(
BH,K

sj −BH,K
sj−1

)
=

n∑
j=1

φ(sj)δ
H,K

(
1(sj−1,sj ](·)

)
,

=

n∑
j=1

δH,K
(
φ(sj)1(sj−1,sj ](·)

)
= δH,K

 n∑
j=1

φ(sj)1(sj−1,sj ](·)

 ,

(2.10)

since the Malliavin derivative of φ(sj) is zero. From the proof of Theorem 1 in
K. Es-sebaiy et al. [6], for a function f ∈ C2 on R satisfying some regularity
condition, we know that the term

In1 = δH,K

 n∑
j=1

f ′
(
BH,K

tj−1

)
1(sj−1,sj ](·)


converges to δH,K

(
f ′

(
BH,K

·

))
in L2(Ω). Moreover, for

φ ∈ Lµ =

{
φ :

∫ T

0

∫ T

0

φ(s)φ(t)µ(ds, dt) <∞

}
,

where µ is a positive measure, then Proposition 6.6 in I. Kruk et al [10] implies
that

(Wiener integral)

∫ T

0

φ(s)dXs =

∫ T

0

φ(s)δXs, (Divergence integral)

where X is a Gaussian process. That is to say, when the integrand is deter-
ministic, the Wiener integral with respect to a Gaussian process coincides with
the divergence integral with respect to it. Combining the above two results
and choosing X = BH,K and µ(ds, dt) = |ϕH,K(s, t)|dsdt, we can obtain the
convergence (2.9).

Moreover, if stochastic process u is independent of BH,K , then the Skorohod

integral
∫ T

0
u(s)dBH,K

s can be defined as (2.9) since the Malliavin derivative of
u is zero.

More generally, for HK ∈ ( 12 , 1). Let |H|nH,K be the set of functions f :
Tn 7→ R with

∥f∥|H|nH,K
=

∫
[0,T ]2n

|f(u1, . . . un)| |f(v1, . . . vn)|

·

(
n∏

i=1

|ϕH,K(ui, vi)|

)
du1 · · · dundv1 · · · dvn <∞.

(2.11)

We will denote by |H|nH,K,S the set of symmetric functions f ∈ |H|nH,K . For

f ∈ |H|2H,K,S , according to P. Caithamer [5], define the operator KH,K
f :
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|H|2H,K,S → |H|2H,K,S

(2.12) (KH,K
f φ)(y) =

∫ T

0

∫ T

0

f(x, y)φ(x′) |ϕH,K(x, x′)| dxdx′.

One can easily check that if f is positive and HK ∈ ( 12 , 1), then the eigen-

values of the operator KH,K
f are positive. In fact, we can write

(KH,K
f ψ)(y) =

∫ T

0

A(x′, y)ψ(x′)dx′,

where A(x′, y) =
∫ T

0
f(x, y) |ϕH,K(x, x′)| dx is positive, then the operatorKH,K

f

is a positive operator. It is noteworthiness that the operator KH,K
f will be

changed as

KH,K
f φ(y) =

∫ T

0

f(x, y)φ(x)dx,

provided HK = 1
2 .

3. The characteristic function of the double integral

Throughout this section, BH,K and Bα,β will denote two independent bifrac-
tional Brownian motions with indices H,K and α, β respectively. We’ll com-
pute the characteristic function of the random variable

(3.1) ℓ :=

∫ T

0

Bα,β
s dBH,K

s .

In the following, we need to restrict ourselves to the situation HK ∈ ( 12 , 1),
then the random variable ℓ of the form (3.1) is well-defined.

We start with the following lemma which gives an approximation of the
random variable ℓ given by (3.1) when HK > 1

2 .

Lemma 3.1. Assume HK > 1
2 and α, β ∈ (0, 1). Denote by

(3.2) Tn =
n−1∑
i=0

Bα,β
ti

(
BH,K

ti+1
−BH,K

ti

)
,

where π : 0 = t0 < t1 < t2 < · · · < tn = T denotes a partition of [0, 1]. Then it
holds that

Tn → ℓ,

in L2(Ω) as as |∆|n = maxn≥1 |tn − tn−1| tends to zero.

Proof. Because of the independence of BH,K and Bα,β , we can write

Bα,β
ti

(
BH,K

ti+1
−BH,K

ti

)
=

∫ ti+1

ti

Bα,β
ti dBH,K

s .
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It suffices to show that
n−1∑
i=0

Bα,β
ti 1[ti,ti+1)(·) → Bα,β

· =
n−1∑
i=0

Bα,β
· 1[ti,ti+1)(·),

in L2(Ω) × |H|H,K as |∆|n → 0. In fact, due to the independence of the two
bifractional Brownian motions. Using formula (2.11), we have

E

∥∥∥∥∥
n−1∑
i=0

(Bα,β
ti −Bα,β

· )1[ti,ti+1]

∥∥∥∥∥
2

|H|H,K

=
n−1∑
i,j=0

∫ ti+1

ti

∫ tj+1

tj

E
(
Bα,β

ti −Bα,β
s

)(
Bα,β

tj −Bα,β
r

)
ϕ(r, s)drds

≤
n−1∑
i,j=0

∫ ti+1

ti

∫ tj+1

tj

(
E
(
Bα,β

ti −Bα,β
s

)2) 1
2
(
E
(
Bα,β

tj −Bα,β
r

)2) 1
2

|ϕ(r, s)| drds

≤22−β−KCHK

n−1∑
i,j=0

∫ ti+1

ti

∫ tj+1

tj

|ti − s|αβ |tj − r|αβ |s− r|2HK−2drds

≤22−β−KCHK |∆|2αβn

n−1∑
i,j=0

∫ ti+1

ti

∫ tj+1

tj

|s− r|2HK−2drds

and this tends to zero for every α, β ∈ (0, 1) as |∆|n → 0. □

We will also need the following technical lemma.

Lemma 3.2. i) Assume αβ ∈
(
1
2 , 1
)
and consider the function

(3.3)

fH,K(x, y)

=T 2HK − 1

2K
{
(T 2H + x2H)K + (T 2H + y2H)K − (T − x)2HK

−(T − y)2HK − (x2H + y2H)K + |x− y|2HK
}
,

where x, y ∈ [0, T ]. Then fH,K ∈ |H|2α,β,S.
ii) Assume HK ∈ ( 12 , 1) and consider the function

(3.4) fα,β(x, y) =
1

2β

[(
x2α + y2α

)β − |x− y|2αβ
]
,

where x, y ∈ [0, T ]. Then fα,β ∈ |H|2H,K,S.

Proof. At first let’s prove the point i); the point ii) is similar. We have to show
that

I :=

∫
[0,T ]4

∣∣fH,K(x1, y1)
∣∣ ∣∣fH,K(x2, y2)

∣∣ |ϕα,β(x1, x2)|
|ϕα,β(y1, y2)| dx1dx2dy1dy2 <∞.
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Note that∣∣fH,K(xi, yi)
∣∣ = E

(
BH,K

T −BH,K
xi

)(
BH,K

T −BH,K
yi

)
≤
(
E
(
BH,K

T −BH,K
xi

)2) 1
2
(
E
(
BH,K

T −BH,K
yi

)2) 1
2

= 21−K(T − xi)
HK(T − yi)

HK .

Then the integral I is therefore bounded by

I ≤ 22−2KCα,β

∫
[0,T ]4

|T − x1|HK |T − y1|HK |T − x2|HK |T − y2|HK

· |x1 − x2|2αβ−2|y1 − y2|2αβ−2dx1dx2dy1dy1

=

(
21−KCα,β

∫ T

0

∫ T

0

(T − x1)
HK(T − x2)

HK |x1 − x2|2αβ−2dx1dx2

)2

.

Now using the change of variable z = x−y
T−y , we get

I1 : =

∫
[0,T ]2

(T − x)HK(T − y)HK |x− y|2αβ−2dydx

= 2

∫ T

0

∫ x

0

(T − x)HK(T − y)HK |x− y|2αβ−2dydx

= 2

∫ T

0

∫ x
T

0

(T − x)2HK+2αβ−1(1− z)−HK−2αβz2αβ−2dzdx

= 2

∫ 1

0

(1− z)−HK−2αβz2αβ−2

(∫ T

Tz

(T − x)2HK+2αβ−1dx

)
dz

=
1

HK + αβ

∫ 1

0

(1− z)−HK−2αβz2αβ−2(T − Tz)2HK+2αβdz

=
T 2HK+2αβ

HK + αβ
B(2αβ − 1,HK + 1) <∞,

using that αβ ∈ ( 12 , 1) and B(a, b) denotes the Beta function. Then we complete
the proof. □

We state now our main result of this paper. The point ii) allows us to
consider the situation when the parameters of the integrator αβ < 1

2 .

Theorem 3.1. Let α, β ∈ ( 12 , 1) and HK ∈ ( 12 , 1). Then the characteristic
function of the random variable ℓ given by (3.1) is

(3.5) Eeitℓ =
∏
i≥1

(
1 +

1

t2µi

) 1
2

,
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where(µi)i≥1 are the eigenvalues of the operator Kα,β
fH,K given by (2.12) and

fH,K is defined by (3.3).

Proof. By Lemma 3.1, we have

Eeitℓ = lim
n→∞

EeitTn ,

where Tn is given by (3.2) with ti =
i
nT for every i = 0, 1, . . . , n − 1. Let us

compute the characteristic function of the random variable Tn. We will using
the following fact: If X,Y are two independent random variables, then

E [Φ(X,Y )|X] = φ(X),

where φ(x) = E [Φ(x, Y )].
Let us put

(3.6) X=
(
Bα,β

0 , Bα,β
1
nT
, . . . Bα,β

n−1
n T

)
, Y =

(
BH,K

1
nT

−BH,K
0 , . . . , BH,K

n
nT −BH,K

n−1
n T

)
.

Therefore we obtain

φ(x) = E
(
eit

∑n−1
k=0 xkYk

)
= e−

t2

2 xTAH,Kx,

where the matrix AH,K =
(
AH,K

k,l

)
k,l=0,1,...,n−1

is given by

AH,K
k,l

=E
(
BH,K

k+1
n T

−BH,K
k
nT

)(
BH,K

l+1
n T

−BH,K
l
nT

)
=

1

2K

(
T

n

)2HK [
((k + 1)2H + (l + 1)2H)K − (k2H + (l + 1)2H)K

− ((k + 1)2H + l2H)K + (k2H + l2H)K + |k − 1− l|2HK + |k − l + 1|2HK

−2|k − l|2HK
]

=
1

2K

(
T

n

)2HK

(f1(k, l) + f2(k, l)),

where

f1(k, l) =
(
(k + 1)2H + (l + 1)2H

)K −
(
k2H + (l + 1)2H

)K
−
(
(k + 1)2H + l2H

)K
+
(
k2H + l2H

)K
,

and
f2(k, l) = |k − 1− l|2HK + |k − l + 1|2HK − 2|k − l|2HK .

We will obtain

EeitTn = Ee−
t2

2 Sn ,

where

Sn : =
n−1∑
k,l=0

AH,K
k,l Bα,β

k
nT
Bα,β

l
nT
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=

n−1∑
k,l=1

AH,K
k,l Bα,β

k
nT
Bα,β

l
nT

=
n−1∑
k,l=1

AH,K
k,l

(
k−1∑
k′=0

(Bα,β
k′+1

n T
−Bα,β

k′
n T

)

)(
l−1∑
l′=0

(
Bα,β

l′+1
n T

−Bα,β
l′
n T

))

=

n−2∑
k′,l′=1

(
Bα,β

k′+1
n T

−Bα,β
k′
n T

)(
Bα,β

l′+1
n T

−Bα,β
l′
n T

) n−1∑
l=0′+1

n−1∑
k=k′+1

AH,K
k,l .

We first calculate

n−1∑
l=l′+1

n−1∑
k=k′+1

AH,K
k,l

=
1

2K

(
T

n

)2HK n−1∑
l=l′+1

n−1∑
k=k′+1

{((k + 1)2H + (l + 1)2H)K − (k2H + (l + 1)2H)K

− ((k + 1)2H + l2H)K + (k2H + l2H)K + (|k − l + 1|2HK − |k − l|2HK)

− (|k − l|2HK − |k − l − 1|2HK)}

=
1

2K

(
T

n

)2HK n−1∑
l=l′+1

{(n2H + (l + 1)2H)K − (n2H + l2H)K − ((k′ + 1)2H

+ (l + 1)2H)K + ((k′ + 1)2H + l2H)K + (n− l)2HK − |k′ + 1− l|2HK

− |n− l − 1|2HK + |k′ − l|2HK}

=
1

2K

(
T

n

)2HK

{(2n2H)K − (n2H + (l′ + 1)2H)K − (n2H + (k′ + 1)2H)K

+ ((l′ + 1)2H + (k′ + 1)2H)K + (n− l′ − 1)2HK + (n− k′ − 1)2HK

− |k′ − l′|2HK}

= fH,K

(
k′ + 1

n
T,
l′ + 1

n
T

)
,

where the function fH,K(x, y) is given by (3.3). By combining the above cal-
culations we get

Sn =
n−1∑
k,l=0

fH,K

(
k + 1

n
T,
l + 1

n
T

)(
Bα,β

k+1
n T

−Bα,β
k
nT

)(
Bα,β

l+1
n T

−Bα,β
l
nT

)
.

Let denote (µi)i≥1 be the eigenvalues of the operator Kα,β
fH,K and by (gi)i≥1 the

corresponding eigenfunctions. Then using Lemma 3.2, we can write

fH,K(x, y) =
∑
i≥1

µigi(x)gi(y),
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with the vectors (gi)i≥1 orthogonal in |H|2α,β,S and the µi are square-summable.
Then the sum Sn becomes

Sn =
n−1∑
k,l=0

∑
i≥1

µigi(
k + 1

n
T )gi(

l + 1

n
T )

(Bα,β
k+1
n T

−Bα,β
k
nT

)(
Bα,β

l+1
n T

−Bα,β
l
nT

)

=
∑
i≥1

µi

 n−1∑
k,l=0

gi

(
k + 1

n
T

)(
Bα,β

k+1
n T

−Bα,β
k
nT

)2

.

Since α, β > 1
2 and gi ∈ |H|2α,β,S , then we have that

n−1∑
k,l=0

gi

(
k + 1

n
T

)(
Bα,β

k+1
n T

−Bα,β
k
nT

)
→
∫ T

0

gi(s)dB
α,β(s),

in L2(Ω) as |∆|n tends to zero. And therefore we have that

Sn →
∑
i≥1

µiH
2
i in L2(Ω),

as n tends to infinity and Hi =
∫ T

0
gi(s)dB

α,β(s), i ≥ 1 are independent stan-
dard normal random variables. As a consequence, since the eigenvalues are
positive, then

E(eitTn) = E

exp

− t
2

2

∑
i≥1

µiH
2
i


=
∏
i≥1

E

(
exp

(
− t

2

2
µiH

2
i

))

=
∏
i≥1

(
1

1 + t2µi

) 1
2

.

□

We can state an alternative result that allows to consider the situation, when
the parameters of the integrand α, β is less than 1

2 ,

Theorem 3.2. Let HK ∈ ( 12 , 1) and α, β ∈ (0, 1). Then the characteristic
function of the random variable ℓ given by (3.1) is

(3.7) Eeitℓ =
∏
i≥1

(
1 +

1

t2ξi

) 1
2

,

where (ξi)i≥1 are the eigenvalues of the operator KH,K
fα,β given by (2.12) and

fα,β is defined by (3.4).
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Proof. We follow the lines of Theorem 3.1 by interchanging the roles of X and
Y in (3.6). We obtain that

E(eitℓ) = lim
n→∞

E
(
e−

t2

2 Sn

)
,

where

Sn : =
n−1∑
k,l=0

E
(
Bα,β

k
nT
Bα,β

l
nT

)(
BH,K

k+1
n T

−BH,K
k
nT

)(
BH,K

l+1
n T

−BH,K
l
nT

)

=

n−1∑
k,l=0

fα,β
(
k

n
T,

l

n
T

)(
BH,K

k+1
n T

−BH,K
k
nT

)(
BH,K

l+1
n T

−BH,K
l
nT

)
,

where fα,β is given by (3.4). Now we use Lemma 3.2 and proceed as in the
proof of Theorem 3.1. □

Remark 1. As a final comment, let us mote that the point 1) and 2) of Theorem
3.1 agree if αβ and HK are bigger than 1

2 . In fact it can be shown that in

this case KH,K
fα,β and Kα,β

fH,K have the same eigenvalues and in this case their

characteristic functions coincide term by term. Indeed, let us suppose that

λ ̸= 0 is an eigenvalue for KH,K
fα,β , then their exist a non-identically zero function

φα,β,H,K ∈ |H|2H,K([0, T ]) such that

(KH,K
fα,βφα,β,H,K)(y) = λφα,β,H,K(y),

or ∫ T

0

∫ T

0

Rα,β(x, y)φα,β,H,K(x′)θH,K(x, x′)dxdx′ = λφα,β,H,K(y).

Let denote ψα,β,H,K(y) = φα,β,H,K(1 − y). It’s easy to cheek that ψα,β,H,K ∈
L2
α,β([0, T ]) and by using the change of variable u = 1 − x and v = 1 − x′ we

obtain

(Kα,β
fH,Kψα,β,H,K)(y) = λψα,β,H,K(y),

which implies that λ is also an eigenvalues of Kα,β
fH,K .

4. The case of two-parameter

For any given vertors H = (H1, H2) ∈ (0, 1)2 and K = (K1,K2) ∈ (0, 1)2,
an (2, 1)-bifractional Brownian sheet BH,K = {BH,K(t), t ∈ R2

+} is a centered
Gaussian random field in R with i.i.d components whose covariance function
are given by

RH,K(t, s) = E
(
BH,K

1 (t)BH,K
1 (s)

)
=

2∏
j=1

1

2Kj

[(
t
2Hj

j + s
2Hj

j

)Kj

− |tj − sj |2HjKj

]
.

(4.1)
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We denoteH(H,K) the canonical Hilbert space of the Gaussian processBH,K
1 (t)

defined by the closure of the linear vector space generated by the elementary
functions {1[0,t]×[0,s], s, t ∈ [0, T ]} with respect to the inner product

(4.2) ⟨1[0,t], 1[0,s]⟩H(H,K) = RH,K(t, s).

If one ofHiKi, i = 1, 2 are greater than 1
2 , then the spaceH(H,K) may contains

distributions. In this case, it is more convenient to work with the following set

of functions |H|(H,K). Therefore Wiener integrals with respect to BH,K
1 (t)

can be naturally defined for integrands in |H|(H,K). The following theorem is
our main result in this section.

Theorem 4.1. For H = (H1,H2),K = (K1,K2), α = (α1, α2) and β =
(β1, β2). Let HiKi >

1
2 , αiβi >

1
2 , i = 1, 2. Then the characteristic function of

the random variable

(4.3) U =

∫
[0,T ]2

Bα,β
1 (t)dBH,K

1 (t),

is given by

(4.4) E
(
eitU

)
=
∏

j,k≥1

√
1

1 + t2µj,1µk,2
,

where µk,r, k ≥ 1 are the eigenvalues of the operators Kαr,βr

fHr,Kr
with fHr,Kr

given by (3.3) for r = 1, 2.

Proof. The proof of the theorem is same as this of Theorem 3.1. For t = (t1, t2)

we denote by Bα,β
1 (t) = Bα,β

1 (t1, t2). Moreover denote by

(4.5) An =

n−1∑
k1,k2=0

Bα,β
1 (tk1 , tk2)B

H,K
1 (∆k1,k2),

where

BH,K
1 (∆k1,k2)

= BH,K
1 (tk1+1, tk2+1)−BH,K

1 (tk1 , tk2+1)−BH,K
1 (tk1+1, tk2) +BH,K

1 (tk1 , tk2),

with tkl
= kl

n T for every kl = 0, 1, . . . , n − 1 and l = 1, 2. As in the proof of

Lemma 3.2, we can prove that An → U as n tends to infinity in L2(Ω) for
HrKr >

1
2 and αrβr >

1
2 , r = 1, 2. Following the same line of reasoning as in

the proof of Lemma 3.2, we have

E
(
eitAn

)
= E

(
e−

1
2 t

2Bn

)
and E

(
eitU

)
= lim

n→∞
E
(
e−

1
2 t

2Bn

)
,
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where Bn is given by

Bn =
n−1∑

k1,k2=0

n−1∑
k′
1,k

′
2=0

fH1,K1

(
k1 + 1

n
T,
k′1 + 1

n
T

)
fH2,K2

(
k2 + 1

n
T,
k′2 + 1

n
T

)
·Bα,β

1 (∆k1,k2)B
α,β
1 (∆k′

1,k
′
2
).

Let now µk,j , k ≥ 1 the eigenvalues of the operator Kαr,βr

fHr,Kr
, r = 1, 2 and

gk,r, k ≥ 1, r = 1, 2 the corresponding eigenfunctions. Then {gk,r, k ≥ 1} ⊂
|H|αr,βr and the sequence {µk,r, k ≥ 1} is square-summable for r = 1, 2, and
moreover gj,1 ⊗ gk,2 ∈ |H|(α, β), j, k ≥ 1 are orthonormal, which implies that
random variables

Bj,k :=

∫
[0,T ]2

gj,1(t1)gk,2(t2)dB
α,β
1 (t1, t2), j, k ≥ 1,

are independent standard normal random variables. By (1) of Lemma 3.2 it
follows that

fHj ,Kj (x, y) =
∑
k≥1

µk,jgk,j(x)gk,j(y)

for j = 1, 2, and

Bn =
∑
j,k≥1

µj,1µk,2

 n−1∑
k2,k′

2=0

gj,1

(
k2 + 1

n
T

)
gk,2

(
k′2 + 1

n
T

)
Bα,β

1

(
∆k2,k′

2

)2

.

On the other hand, it is not difficult to check that

n−1∑
k2,k′

2=0

gj,1

(
k2 + 1

n
T

)
gk,2

(
k′2 + 1

n
T

)
Bα,β

1

(
∆k2,k′

2

)
→
∫ T

0

∫ T

0

gj,1(s)gk,2(t)dB
α,β
1 (s, t),

in L1, for all j, k ≥ 1, as n tends to infinity. It follows that

Bn −→
∑
j,k≥1

µj,1µk,2(Bj,k)
2,

in L1, as n tends to infinity, and the theorem follows. □
Theorem 4.2. Assume that HrKr >

1
2 and αrβr ∈ (0, 12 ), r = 1, 2. Then

(4.6) E
(
eitU

)
=
∏

j,k≥1

√
1

1 + t2λj,1λk,2
,

where the random variable U is given by (4.3) and λk,r, k ≥ 1 are the eigenval-

ues of the operator KHr,Kr

fαr,βr
with fαr,βr given by (3.4) for r = 1, 2.
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