• 제목/요약/키워드: Best Linear Unbiased Prediction

검색결과 47건 처리시간 0.021초

Comparison of genomic predictions for carcass and reproduction traits in Berkshire, Duroc and Yorkshire populations in Korea

  • Iqbal, Asif;Choi, Tae-Jeong;Kim, You-Sam;Lee, Yun-Mi;Alam, M. Zahangir;Jung, Jong-Hyun;Choe, Ho-Sung;Kim, Jong-Joo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제32권11호
    • /
    • pp.1657-1663
    • /
    • 2019
  • Objective: A genome-based best linear unbiased prediction (GBLUP) method was applied to evaluate accuracies of genomic estimated breeding value (GEBV) of carcass and reproductive traits in Berkshire, Duroc and Yorkshire populations in Korean swine breeding farms. Methods: The data comprised a total of 1,870, 696, and 1,723 genotyped pigs belonging to Berkshire, Duroc and Yorkshire breeds, respectively. Reference populations for carcass traits consisted of 888 Berkshire, 466 Duroc, and 1,208 Yorkshire pigs, and those for reproductive traits comprised 210, 154, and 890 dams for the respective breeds. The carcass traits analyzed were backfat thickness (BFT) and carcass weight (CWT), and the reproductive traits were total number born (TNB) and number born alive (NBA). For each trait, GEBV accuracies were evaluated with a GEBV BLUP model and realized GEBVs. Results: The accuracies under the GBLUP model for BFT and CWT ranged from 0.33-0.72 and 0.33-0.63, respectively. For NBA and TNB, the model accuracies ranged 0.32 to 0.54 and 0.39 to 0.56, respectively. The realized accuracy estimates for BFT and CWT ranged 0.30 to 0.46 and 0.09 to 0.27, respectively, and 0.50 to 0.70 and 0.70 to 0.87 for NBA and TNB, respectively. For the carcass traits, the GEBV accuracies under the GBLUP model were higher than the realized GEBV accuracies across the breed populations, while for reproductive traits the realized accuracies were higher than the model based GEBV accuracies. Conclusion: The genomic prediction accuracy increased with reference population size and heritability of the trait. The GEBV accuracies were also influenced by GEBV estimation method, such that careful selection of animals based on the estimated GEBVs is needed. GEBV accuracy will increase with a larger sized reference population, which would be more beneficial for traits with low heritability such as reproductive traits.

Single-step genomic evaluation for growth traits in a Mexican Braunvieh cattle population

  • Jonathan Emanuel Valerio-Hernandez;Agustin Ruiz-Flores;Mohammad Ali Nilforooshan;Paulino Perez-Rodriguez
    • Animal Bioscience
    • /
    • 제36권7호
    • /
    • pp.1003-1009
    • /
    • 2023
  • Objective: The objective was to compare (pedigree-based) best linear unbiased prediction (BLUP), genomic BLUP (GBLUP), and single-step GBLUP (ssGBLUP) methods for genomic evaluation of growth traits in a Mexican Braunvieh cattle population. Methods: Birth (BW), weaning (WW), and yearling weight (YW) data of a Mexican Braunvieh cattle population were analyzed with BLUP, GBLUP, and ssGBLUP methods. These methods are differentiated by the additive genetic relationship matrix included in the model and the animals under evaluation. The predictive ability of the model was evaluated using random partitions of the data in training and testing sets, consistently predicting about 20% of genotyped animals on all occasions. For each partition, the Pearson correlation coefficient between adjusted phenotypes for fixed effects and non-genetic random effects and the estimated breeding values (EBV) were computed. Results: The random contemporary group (CG) effect explained about 50%, 45%, and 35% of the phenotypic variance in BW, WW, and YW, respectively. For the three methods, the CG effect explained the highest proportion of the phenotypic variances (except for YW-GBLUP). The heritability estimate obtained with GBLUP was the lowest for BW, while the highest heritability was obtained with BLUP. For WW, the highest heritability estimate was obtained with BLUP, the estimates obtained with GBLUP and ssGBLUP were similar. For YW, the heritability estimates obtained with GBLUP and BLUP were similar, and the lowest heritability was obtained with ssGBLUP. Pearson correlation coefficients between adjusted phenotypes for non-genetic effects and EBVs were the highest for BLUP, followed by ssBLUP and GBLUP. Conclusion: The successful implementation of genetic evaluations that include genotyped and non-genotyped animals in our study indicate a promising method for use in genetic improvement programs of Braunvieh cattle. Our findings showed that simultaneous evaluation of genotyped and non-genotyped animals improved prediction accuracy for growth traits even with a limited number of genotyped animals.

A Statistical Estimation of The Universal Constants Using A Simulation Predictor

  • Park, Jeong-Soo-
    • 한국시뮬레이션학회:학술대회논문집
    • /
    • 한국시뮬레이션학회 1992년도 제2회 정기총회 및 추계학술 발표회 발표논문 초록
    • /
    • pp.6-6
    • /
    • 1992
  • This work deals with nonlinear least squares method for estimating unknown universial constants C in a computer simulation code real experimental data(or database) and computer simulation data. The best linear unbiased predictor based on a spatial statistical model is fitted from the computer simulation data. Then nonlinear least squares estimation method is applied to the real data using the fitted prediction model(or simulation predictor) as if it were the true simulation model. An application to the computational nuclear fusion device is presented.

  • PDF

The effect of progeny numbers and pedigree depth on the accuracy of the EBV with the BLUP method

  • Jang, Sungbong;Kim, So Yeon;Lee, Soo-Hyun;Shin, Min Gwang;Kang, Jimin;Lee, Dooho;Kim, Sidong;Noh, Seung Hee;Lee, Seung Hwan;Choi, Tae Jeong
    • 농업과학연구
    • /
    • 제46권2호
    • /
    • pp.293-301
    • /
    • 2019
  • This study was done to estimate the effect of progeny numbers and pedigree depth on the accuracy of the estimated breeding value (EBV) using best linear unbiased prediction (BLUP) method in Hanwoo. The experiment groups (sire = 100, 200, and 300; progeny = 4 and 8) were made by random sampling and by genetic evaluation of the following traits: Body weight (BW), carcass weight (CW), eye muscle area (EMA), back fat thickness (BFT) and marbling score (MS9). As a result of the genetic evaluation, the accuracy of the EBV was roughly 30 - 60% with 4 progenies, and the accuracy of the EBV increased by about 50 - 75% with 8 progenies. In the other words, when the number of progenies increased from 4 to 8, the accuracy of the EBV simultaneously increased by about 15 - 20%. Moreover, when the number of sires was higher, variations in the accuracy of the EBV within the groups for each trait decreased. Therefore, this result indicates that not only the number of progeny but also the number of sires can affect the accuracy of the EBV. Consequently, collecting information on the progeny and careful management of that information are very important things in the Hanwoo breeding system. Therefore, the EBV can show more precise results when conducting genetic evaluations.

Effect of Heterogeneous Variance by Sex and Genotypes by Sex Interaction on EBVs of Postweaning Daily Gain of Angus Calves

  • Oikawa, T.;Hammond, K.;Tier, B.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제12권6호
    • /
    • pp.850-853
    • /
    • 1999
  • Angus postweaning daily gain (PWDG) was analyzed to investigate effects of the heterogeneous variance and the genotypes by sex interaction on prediction of EBVs with data sets of various environmental levels. A whole data (16,239 records) was divided into six data sets according to averages of the best linear unbiased estimator (BLUE) of herd environment. The results comparing prediction models showed that single-trait model is adequate for most of the data sets except for the data set of poor environment for both of the bulls and the heifers where the heterogeneity of variance and the genotypes by sex interaction exists. In the prediction with the data set of the low environment level, the bull's EBVs by single-trait models had high product moment correlations with male EBVs of the bulls by the multitrait model. Whereas the heifer's EBVs had moderate correlations with female EBVs by the multitrait model. This moderate correlation seems to be resulted by the heterogeneity of variance and low heritability of the heifer's PWDG. The prediction models with heterogeneity of variance had little effect on the prediction of EBVs for the data sets with moderate to high genetic correlations.

Comparison of genome-wide association and genomic prediction methods for milk production traits in Korean Holstein cattle

  • Lee, SeokHyun;Dang, ChangGwon;Choy, YunHo;Do, ChangHee;Cho, Kwanghyun;Kim, Jongjoo;Kim, Yousam;Lee, Jungjae
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제32권7호
    • /
    • pp.913-921
    • /
    • 2019
  • Objective: The objectives of this study were to compare identified informative regions through two genome-wide association study (GWAS) approaches and determine the accuracy and bias of the direct genomic value (DGV) for milk production traits in Korean Holstein cattle, using two genomic prediction approaches: single-step genomic best linear unbiased prediction (ss-GBLUP) and Bayesian Bayes-B. Methods: Records on production traits such as adjusted 305-day milk (MY305), fat (FY305), and protein (PY305) yields were collected from 265,271 first parity cows. After quality control, 50,765 single-nucleotide polymorphic genotypes were available for analysis. In GWAS for ss-GBLUP (ssGWAS) and Bayes-B (BayesGWAS), the proportion of genetic variance for each 1-Mb genomic window was calculated and used to identify informative genomic regions. Accuracy of the DGV was estimated by a five-fold cross-validation with random clustering. As a measure of accuracy for DGV, we also assessed the correlation between DGV and deregressed-estimated breeding value (DEBV). The bias of DGV for each method was obtained by determining regression coefficients. Results: A total of nine and five significant windows (1 Mb) were identified for MY305 using ssGWAS and BayesGWAS, respectively. Using ssGWAS and BayesGWAS, we also detected multiple significant regions for FY305 (12 and 7) and PY305 (14 and 2), respectively. Both single-step DGV and Bayes DGV also showed somewhat moderate accuracy ranges for MY305 (0.32 to 0.34), FY305 (0.37 to 0.39), and PY305 (0.35 to 0.36) traits, respectively. The mean biases of DGVs determined using the single-step and Bayesian methods were $1.50{\pm}0.21$ and $1.18{\pm}0.26$ for MY305, $1.75{\pm}0.33$ and $1.14{\pm}0.20$ for FY305, and $1.59{\pm}0.20$ and $1.14{\pm}0.15$ for PY305, respectively. Conclusion: From the bias perspective, we believe that genomic selection based on the application of Bayesian approaches would be more suitable than application of ss-GBLUP in Korean Holstein populations.

Model selection algorithm in Gaussian process regression for computer experiments

  • Lee, Youngsaeng;Park, Jeong-Soo
    • Communications for Statistical Applications and Methods
    • /
    • 제24권4호
    • /
    • pp.383-396
    • /
    • 2017
  • The model in our approach assumes that computer responses are a realization of a Gaussian processes superimposed on a regression model called a Gaussian process regression model (GPRM). Selecting a subset of variables or building a good reduced model in classical regression is an important process to identify variables influential to responses and for further analysis such as prediction or classification. One reason to select some variables in the prediction aspect is to prevent the over-fitting or under-fitting to data. The same reasoning and approach can be applicable to GPRM. However, only a few works on the variable selection in GPRM were done. In this paper, we propose a new algorithm to build a good prediction model among some GPRMs. It is a post-work of the algorithm that includes the Welch method suggested by previous researchers. The proposed algorithms select some non-zero regression coefficients (${\beta}^{\prime}s$) using forward and backward methods along with the Lasso guided approach. During this process, the fixed were covariance parameters (${\theta}^{\prime}s$) that were pre-selected by the Welch algorithm. We illustrated the superiority of our proposed models over the Welch method and non-selection models using four test functions and one real data example. Future extensions are also discussed.

Application of single-step genomic evaluation using social genetic effect model for growth in pig

  • Hong, Joon Ki;Kim, Young Sin;Cho, Kyu Ho;Lee, Deuk Hwan;Min, Ye Jin;Cho, Eun Seok
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제32권12호
    • /
    • pp.1836-1843
    • /
    • 2019
  • Objective: Social genetic effects (SGE) are an important genetic component for growth, group productivity, and welfare in pigs. The present study was conducted to evaluate i) the feasibility of the single-step genomic best linear unbiased prediction (ssGBLUP) approach with the inclusion of SGE in the model in pigs, and ii) the changes in the contribution of heritable SGE to the phenotypic variance with different scaling ${\omega}$ constants for genomic relationships. Methods: The dataset included performance tested growth rate records (average daily gain) from 13,166 and 21,762 pigs Landrace (LR) and Yorkshire (YS), respectively. A total of 1,041 (LR) and 964 (YS) pigs were genotyped using the Illumina PorcineSNP60 v2 BeadChip panel. With the BLUPF90 software package, genetic parameters were estimated using a modified animal model for competitive traits. Giving a fixed weight to pedigree relationships (${\tau}:1$), several weights (${\omega}_{xx}$, 0.1 to 1.0; with a 0.1 interval) were scaled with the genomic relationship for best model fit with Akaike information criterion (AIC). Results: The genetic variances and total heritability estimates ($T^2$) were mostly higher with ssGBLUP than in the pedigree-based analysis. The model AIC value increased with any level of ${\omega}$ other than 0.6 and 0.5 in LR and YS, respectively, indicating the worse fit of those models. The theoretical accuracies of direct and social breeding value were increased by decreasing ${\omega}$ in both breeds, indicating the better accuracy of ${\omega}_{0.1}$ models. Therefore, the optimal values of ${\omega}$ to minimize AIC and to increase theoretical accuracy were 0.6 in LR and 0.5 in YS. Conclusion: In conclusion, single-step ssGBLUP model fitting SGE showed significant improvement in accuracy compared with the pedigree-based analysis method; therefore, it could be implemented in a pig population for genomic selection based on SGE, especially in South Korean populations, with appropriate further adjustment of tuning parameters for relationship matrices.

Sire Evaluation Using Animal Model and Conventional Methods in Murrah Buffaloes

  • Jain, A.;Sadana, D.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제13권9호
    • /
    • pp.1196-1200
    • /
    • 2000
  • First lactation records of 683 Murrah buffaloes maintained at National Dairy Research Institute, Karnal, were used for comparing the sire evaluation for age at first calving, first lactation 305-day or less milk yield and first service period. The sires were evaluated using Simple daughters average, Contemporary comparison, Least-squares and BLUP methods. The BLUP evaluations were obtained under single-, two- and three-trait individual animal models. The results revealed that for taking a decision regarding the method of sire evaluation to be used for selecting sires with high breeding values, criteria of the rank correlation could be misleading and comparison of the selected sires is likely to give a veritable picture. The Best Linear Unbiased Prediction method under multi-trait animal model incorporating first lactation milk yield with first service period as a covariable and age at first calving in the model was found to be more efficient and accurate for sire selection in Murrah buffaloes.

A FRAMEWORK TO UNDERSTAND THE ASYMPTOTIC PROPERTIES OF KRIGING AND SPLINES

  • Furrer Eva M.;Nychka Douglas W.
    • Journal of the Korean Statistical Society
    • /
    • 제36권1호
    • /
    • pp.57-76
    • /
    • 2007
  • Kriging is a nonparametric regression method used in geostatistics for estimating curves and surfaces for spatial data. It may come as a surprise that the Kriging estimator, normally derived as the best linear unbiased estimator, is also the solution of a particular variational problem. Thus, Kriging estimators can also be interpreted as generalized smoothing splines where the roughness penalty is determined by the covariance function of a spatial process. We build off the early work by Silverman (1982, 1984) and the analysis by Cox (1983, 1984), Messer (1991), Messer and Goldstein (1993) and others and develop an equivalent kernel interpretation of geostatistical estimators. Given this connection we show how a given covariance function influences the bias and variance of the Kriging estimate as well as the mean squared prediction error. Some specific asymptotic results are given in one dimension for Matern covariances that have as their limit cubic smoothing splines.