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Abstract
The model in our approach assumes that computer responses are a realization of a Gaussian processes su-

perimposed on a regression model called a Gaussian process regression model (GPRM). Selecting a subset of
variables or building a good reduced model in classical regression is an important process to identify variables
influential to responses and for further analysis such as prediction or classification. One reason to select some
variables in the prediction aspect is to prevent the over-fitting or under-fitting to data. The same reasoning and ap-
proach can be applicable to GPRM. However, only a few works on the variable selection in GPRM were done. In
this paper, we propose a new algorithm to build a good prediction model among some GPRMs. It is a post-work
of the algorithm that includes the Welch method suggested by previous researchers. The proposed algorithms
select some non-zero regression coefficients (β’s) using forward and backward methods along with the Lasso
guided approach. During this process, the fixed were covariance parameters (θ’s) that were pre-selected by the
Welch algorithm. We illustrated the superiority of our proposed models over the Welch method and non-selection
models using four test functions and one real data example. Future extensions are also discussed.

Keywords: Bayesian information criterion, best linear unbiased prediction, covariance matrix,
Kriging, maximum likelihood estimation, metamodel, numerical optimization

1. Introduction

The development of computer technology has enabled researchers to replace a physical experiment
using complex computer simulation codes. In addition, computer codes often have high dimensional
inputs. In these cases, computer simulation codes can be computationally expensive; therefore, it can
be impossible to directly use a computer simulation code for the design and analysis of computer
experiment (DACE), because it needs to run many computer simulation codes for the optimization
of objective functions. However, one can use a statistical model as a metamodel to approximate
a functional relationship between the input variables and response values of a computer simulation
instead of the simulation code itself.

Typically, a computer code is deterministic or it has a small measurement error. For this reason,
Sacks et al. (1989) suggested adopting a Gaussian process regression model (GPRM) as a metamodel
for the computer simulation code. The GPRM has often been successfully used in the past for the
modeling of computer simulation data. A few examples of recent works that used GPRM for the
modeling of computer simulation data are as follows:

• Mechanical engineering: Slonski (2011), Lee and Gard (2014), and Dubourg et al. (2013)
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• Health economics: Rojnik and Naveršnik (2008), and Stevenson et al. (2004)

• Computer and system engineering: Kennedy et al. (2006), Johnson et al. (2011), and Zhang et al.
(2017)

• Chemical engineering: Gomes et al. (2008), Caballero and Grossmann (2008), and Liu et al. (2013)

• Other fields: Kapoor et al. (2010), Rohmer and Foerster (2011), Deng et al. (2012), Silvestrini et
al. (2013), Tagade et al. (2013), and Kumar (2015).

However, many of these researches have not applied a systematic model selection method, which has
motivated the current work. In classical regression, when there are many independent variables, we
select the subset of independent variables which gives good fit. The reason why is because over-
fitting can lead to a significant variance of predicts and under-fitting can lead to a bias of predicts.
Therefore, for the building of prediction model, it is important to find best subset of independent
variables which gives good fit (Jung and Park, 2015; Lee, 2015). The same reasoning and approach
can be applicable to GPRM. However, only a few works about the variable selection in GPRM have
been done (Linkletter et al., 2006; Marrel et al., 2008; Welch et al., 1992), and almost all previous
researches employed simple GPRM withou a variable and parameter selection. Linkletter et al. (2006)
used a Bayesian approach while Marrel et al. (2008) used a corrected Akaike information criterion,
which are both different from our approach.

The classical regression model has only regression coefficients β’s; however, the GRRM has β’s
as well as coefficients θ’s in the correlation function that complicates the variable selection task. In
this paper, we propose to select some θ’s, first by the Welch method and then, by under fixing the
θ’s, select some β’s by forward selection and backward elimination. The proposed algorithms are
validated and compared to the simple models and Welch method through four test functions as well
as one real data example. From the test functions study, we found that the model obtained from the
proposed methods provide better result than the other models in relation to the prediction error.

Following Sacks et al. (1989), we consider a Gaussian process model defined on an index set
X ⊆Rd for DACE:

y(x) =
p∑

j=1

β j f j(x) + Z(x), (1.1)

where f ’s are a known function and β’s are unknown regression coefficient. Here the random process
Z(·) is assumed to be a Gaussian process with mean zero and covariance matrix σ2V for σ2 > 0,
where σ2 is the process variance (a scale factor) and V is a correlation matrix. Among many possible
covariance functions (see Santner et al., 2003), we consider the “power exponential family” which is
given by

cov
(
Z

(
xi

)
,Z

(
x j

))
= σ2 exp

− d∑
k=1

θk

∣∣∣xik − x jk

∣∣∣αk

 + σ2
eδi, j, (1.2)

where θk ≥ 0, 0 < αk ≤ 2 for all k, σ2
e is the variance due to nugget effect, and δi, j is the Kronecker

delta. Then correlation function is

vi, j = corr
(
Z

(
xi

)
,Z

(
x j

))
= exp

− d∑
k=1

θk

∣∣∣xik − x jk

∣∣∣αk

 + γδi, j, (1.3)
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where γ = σ2
e/σ

2 and γ ≥ 0. Throughout this study, we set α = 2 and γ = 0.
Once data have been collected at the observation sites {x1, . . . , xn}, we use maximum likelihood

estimation (MLE) method to estimate parameters in the model (1.1) and (1.2). Since we assume y(x)
is a Gaussian process with mean Fβ and covariance matrix σ2V , the likelihood function of y is

L
(
y; θ, β, σ2, γ, α, x

)
=

(
2πσ2

)− n
2

√
|V |

exp
(
− (y − Fβ)tV−1(y − Fβ)

2σ2

)
, (1.4)

where F is a design matrix. A numerical optimization procedure is required because the likelihood
equations do not lead to a closed form solution. We need an efficient MLE searching program to build
a good prediction model. Its implementation details are presented in Park and Baek (2001).

The MLE’s of the parameters are then plugged into the spatial linear model to predict y(x) at
which x is not an observation site (the prediction is called Kriging). The empirical best linear unbiased
prediction with the MLE (θ̂, β̂) of parameters plugged into is given by

Ŷ(x0) = f t
0 β̂ + rt

0V̂−1
(
y − Fβ̂

)
, (1.5)

where f0 is the known linear regression functions vector, r0 is the correlation vector between x0 and
design S , and y is the vector of observation collected at the design sites.

2. Existing model selection algorithm

The GPRM from (1.1) has regression coefficients β’s as well as coefficients θ’s in the correlation
function that complicates the variable selection. Among the many possible combinations of the β’s
and θ’s, we consider the following four models as basic ones (Cox et al., 2001):

•Model 1: β0 + common θc

•Model 2: β0 + all θ’s

•Model 3: first order liner model + common θc

•Model 4: first order liner model + all θ’s.

Here the “common θ” means that d number of θ’s are forced to be a common θc such that θ1 = θ2 =

· · · = θd := θc.
One purpose of computer experiments is to establish a cheap metamodel using the above Gaussian

process model and Kriging prediction. For this purpose, a good prediction model should be built. Our
experience leads to a model with a combination of some β’s and θ’s that gives a good prediction
model. In this paper, we describe an algorithm for building a good prediction model.

Welch et al. (1992) described an algorithm to screen important input variables in computer ex-
periments that used a Gaussian process model. They proposed using a dimensional reduction scheme
to perform a series of presumably simpler optimization. The idea is to make tractable, the high-
dimensional minimization by constraining the number of free θ’s; only “important” θ’s are allowed to
posses their own values. Following Santner et al. (2003), we describe the algorithm below because
our algorithm is a post-work of it. Hereafter, it is referred to as the Welch6 or W6 algorithm, because
six people including the first author Welch wrote the paper (Welch et al., 1992). At each stage of the
process, let C denote the indices of the variables having a common θ for that step and let C− j = C
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− j. Notice that [S-0] is an initialization step, while [S-1] and [S-2] are induction steps. Only β0 is
estimated for the linear model term.

•Model 5: W6 algorithm

S-0 Set C = {1, 2, . . . , d}, i.e., θ1 = θ2 = · · · = θd := θc. Maximize (1.4) as a function of θc and the
resulting log likelihood by l0.

S-1 For each j ∈ C, maximize (1.4) under the constraint that θ’s with in C− j have a common value
and θ j varies freely. Denote the result by l j.

S-2 Let jM denote the θ producing the largest increase in l j − l0 for j ∈ C.

S-3 If l jM − l0 represents a significant increase in the log likelihood as judged by a stopping criterion,
then set C = C− jM , l0 = l jM , and fix θ jM at its value estimated in [S-1]. Continue the next iteration
at [S-1]. Otherwise, stop the algorithm and take θ̂’s produced by the previous iteration.

For stopping criterion, they used the number 6 which is χ2
.05(2) based on the 2 times log likelihood

ratio.

3. Proposed algorithms

The algorithm of Welch et al. (1992) works for screening input variables. But for building prediction
model, we attach more steps to select some of β terms in the model. Let us assume that k θ’s are
selected in the above W6 algorithm; we next then fix it as true. Now we will consider five approaches:
forward selection and Backward elimination of β’s based on likelihood ratio test (LRT), forward
selection and Backward elimination of β’s based on Bayesian information criterion (BIC), and least
absolute shrinkage and selection operator (Lasso) guided selection. Note that all of these are a kind
of “W6 + β selection” algorithm.

•Model 6: forward β selection based on LRT

S-4 Estimate such k θ’s under constant linear model (only β0) by k-dimensional optimization routine.
Here the k θ’s are allowed to posses values freely. Then fix the MLE of k θ’s throughout the
iterations.

S-5 Select β’s producing the largest increase of the log likelihood as the same as in the forward
selection algorithm in ordinary regression model building. The significance of the increase is
judged by a stopping criterion.

S-6 When the β selection is done, estimate the k θ’s and the selected β’s using the MLE program.

•Model 7: backward β elimination based on LRT

S-4 Estimate such k θ’s under the first order linear model by k-dimensional optimization routine.
Then fix the MLE of k θ’s throughout the iterations.

S-5 Eliminate β’s producing the smallest decrease of log likelihood as the same as in the backward
elimination algorithm in ordinary regression model building. The significance of the decrease is
judged by a stopping criterion.
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S-6 When the β elimination is done, estimate the k θ’s and the remained β’s using the MLE program.

When the values of some θ’s are fixed, the computation involved in selection or in elimination of
β’s are relatively fast, no optimization is required; β̂ = (F tV−1F)−1F tV−1y. Here β̂ is the generalized
least squares estimator of β.

•Model 8: forward β selection based on BIC (James et al., 2013)

S-4 Let M0 denote the null model, which contains no predictors.

S-5 For k = 0, . . . , p − 1:

(a) Consider all p − k models that augment the predictors in Mk with one additional predictor

(b) Choose the best among these p − k models, and call it Mk+1. Here the best is defined as
having smallest negative log likelihood

S-6 Select a single best model from among M0, . . . , Mp using the smallest BIC, where

BICk = −2 ln(L) + k · ln(n).

•Model 9: backward β elimination based on BIC

S-4 Let Mp denote the f ull model, which contains all p predictors.

S-5 For k = p, p − 1, . . . , 1:

(a) Consider all k models that contain all but one of the predictors in Mk, for a total of k − 1
predictors

(b) Choose the best among these k models, and call it Mk−1. Here the best is defined as having
smallest negative log likelihood

S-6 Select a single best model from among M0, . . . , Mp using BIC.

•Model 10: Lasso guided β selection

The lasso coefficients, β̂L
λ , minimize the quantity

n∑
i=1

yi − β0 −
p∑

j=1

β jxi j

2

+ λ

p∑
j=1

|β j|, (3.1)

with respect to β’s. The Lasso shrinks the coefficient estimates towards zero. The l1 penalty on β has
the effect of forcing some of the coefficient estimates to be exactly zero when the tuning parameter λ
is sufficiently large. Hence, the Lasso performs variable selection much like the best subset selection
(James et al., 2013). Selecting a good value of λ is usually done by cross-validation.

We first apply the Lasso to our data, and find some non-zero β̂L
λ’s. Then our selected model is

the GPRM with only the non-zero β̂L
λ’s and with the fixed covariance terms obtained by the Welch

algorithm. Note that the Lasso here is applied without the covariance assumption (1.2) and is only
used to select non-zero coefficients under the independent error model.

Now we have five models in which some β’s are selected by the proposed methods. Table 1
presents a description on the considered 10 GPR models (GPRMs) (M1–M10).
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Table 1: Description on the considered Gaussian process regression models (M1–M10)

Model β θ Description
M1 β0 θc Model 1 in Section 2
M2 β0 all θ’s Model 2 in Section 2
M3 all β’s θc Model 3 in Section 2
M4 all β’s all θ’s Model 4 in Section 2
M5 β0 θ selected by W6 algorithm W6 algorithm in Section 3
M6 β selected θ selected by W6 algorithm Forward β selection based on LRT
M7 β selected θ selected by W6 algorithm Backward β elimination based on LRT
M8 β selected θ selected by W6 algorithm Forward β selection based on BIC
M9 β selected θ selected by W6 algorithm Backward β elimination based on BIC
M10 β selected θ selected by W6 algorithm Lasso guided β selection

LRT = likelihood ratio test; BIC = Bayesian information criterion.

4. Test function study

We studied simple functions as test toy models in order to check the performance of the proposed
algorithm compared to the basic models and Welch’s approach. After obtaining sample responses
from selected design sites, we followed the above algorithms. The performance is evaluated by com-
paring the true function values and the predictions of the model and by using the BIC. We tried four
test functions and one real data example in this study. For the evaluation of the prediction model, the
following root mean squared prediction error (rmspe) is calculated for 500 or 1,000 random points on
(−0.5, 0.5)d:

rmspe =

√√√
1
n

N∑
j=1

(
y j − ŷ j

)2
. (4.1)

The relative improvement of the best model over M5 (Welch algorithm) is calculated by

rmspe(M5) − rmspe(best)
rmspe(M5)

× 100.

4.1. Test function 1

y = y1 + y2 + y1 × y2, (4.2)

where

y1 = 4x1 + x2 +
x3

4
+

x4

16
, (4.3)

y2 = x2
3 − x2

2, −0.5 ≤ xi ≤ 0.5. (4.4)

As a design site, 12 runs optimal Latin hypercube design is constructed by Park (1994)’s algorithm
(Figure 1).

Table 2 shows the selected prediction models and performance. Based on rmspe, M5 does not
work well compared to M1–M4. The models M6 and M8 are similar and work best. The improvement
over M5 is 58.0%. Based on BIC, M7, and M9 work best. This test function is a linear model that may
be adequately approximated by the model of several included β terms. Figure 2 shows the residual
plots of the models, in which the plot of M6 looks better than others. The Lasso guided selection, M10
did not work well. This may be because M10 uses the Lasso without taking the covariance matrix
into account, while our GPRM remains the covariance dependent.
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Figure 1: A 4-dimension 12 runs optimal Latin-hypercube design used for test function 1.

Table 2: Selected models and their rmspe and BIC value for test function 1

Model β θ rmspe BIC
M1 β0 θc 0.1783 24.9748
M2 β0 all θ’s 0.1921 19.6810
M3 all β’s θc 0.1777 −4.9507
M4 all β’s all θ’s 0.1709 −5.6084
M5 β0 θ1, θ2 0.3667 24.2830
M6 β0, β1, β2, β3 θ1, θ2 0.1540 −7.2326
M7 β0, β1, β3 , β4 θ1, θ2 0.2226 −8.4816
M8 β0, β1, β2 , β3 θ1, θ2 0.1540 −7.2326
M9 β0, β1 , β3 , β4 θ1, θ2 0.2226 −8.4816

M10 β0, β1 , β2 , β3, β4 θ1, θ2 0.1646 −5.4570

A description on models (M1–M10) is provided in Table 1.
rmspe = root mean squared prediction error; BIC = Bayesian information criterion.

4.2. Test function 2

y =
2πx3(x4 − x6)

ln(x2/x1)[1 + U(x)]
, (4.5)

where

U(x) =
2x7x3

ln(x2/x1)x2
1 × 9855

+
x3

x5
.

This equation from Morris and Mitchell (1995) has a physical interpretation that y represent steady-
state flow of water through a borehole between two aquifers. A 7-dimensional 100 runs Latin hyper-
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Figure 2: Residual plots of the prediction models for the test function 1 with 500 random prediction points. Plots
for M8 and M9 are omitted because they are the same for M6 and M7, respectively. See Table 1 for a description

on models (M1–M10).

Table 3: Result for test function 2

Model β θ rmspe BIC
M1 β0 θc 1.6435 562.8069
M2 β0 all θ’s 1.0843 502.4237
M3 all β’s θc 1.2010 577.0617
M4 all β’s all θ’s 0.9083 441.5618
M5 β0 θ1, θ4, θ6, θ7 0.5585 340.9313
M6 β0, β1, β2, β4, β5, β6, β7 θ1, θ4, θ6, θ7 0.3689 264.2891
M7 β0, β1, β2, β4 , β5, β7 θ1, θ4, θ6, θ7 0.3731 262.3349
M8 β0, β1, β2, β4, β5, β6, β7 θ1, θ4, θ6, θ7 0.3689 264.2891
M9 β0, β1, β2, β4 , β5, β7 θ1, θ4, θ6, θ7 0.3731 262.3349
M10 β0, β1, β2, β4 , β5, β7 θ1, θ4, θ6, θ7 0.3689 264.2891

The others are the same as Table 2.
rmspe = root mean squared prediction error; BIC = Bayesian information criterion.

cube design is constructed as a design site. One thousand random points on the domain were used to
compute the rmspe.

Table 3 shows the selected prediction models and their performance. Based on rmspe, a M5 model
is better than M1–M4, but worse than M6–M10. The best are M6, M8, and M10. The improvement
over M5 is 33.9%. Based on BIC, M7, and M9 work best. Figure 3 shows the residual plots of the
models in which the plot of M6 looks better than the others.

4.3. Test function 3

y = y1 + y2, (4.6)
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Figure 3: Residual plots of the prediction models for the test function 2 with 1,000 random prediction points.
Plots for M8, M9, and M10 are omitted because they are the same for M6 and M7, respectively. See Table 1 for

a description on models (M1–M10).

Table 4: Result for test function 3

Model β θ rmspe BIC
M1 β0 θc 3.4471 290.3785
M2 β0 all θ’s 1.2965 215.6780
M3 all β’s θc 3.9277 332.6453
M4 all β’s all θ’s 1.5580 266.4429
M5 β0 θ1, θ4, θ5, θ12, θ19, θ20 2.4937 254.8991
M6 β0, β5, β9, β11, β12 θ1, θ4, θ5, θ12, θ19, θ20 1.0237 188.5468
M7 β0, β5, β9, β11, β12 θ1, θ4, θ5, θ12, θ19, θ20 1.0237 188.5468
M8 β0, β5, β9, β11 θ1, θ4, θ5, θ12, θ19, θ20 1.0499 187.6149
M9 β0, β5, β9, β11 θ1, θ4, θ5, θ12, θ19, θ20 1.0499 187.6149

M10 β0, β2, β7, β9, β12, β18, β19 θ1, θ4, θ5, θ12, θ19, θ20 1.2551 207.4258

The others are the same as Table 2.
rmspe = root mean squared prediction error; BIC = Bayesian information criterion.

where

y1 =
5x12

1 + x1
+ 5(x4 − x20)2 + x5 + 40x3

19 − 5x19, (4.7)

y2 = 0.05x2 + 0.08x3 − 0.03x6 + 0.03x7 − 0.09x9 − 0.01x10 − 0.07x11

+ 0.25x2
13 − 0.04x14 + 0.06x15 − 0.01x17 − 0.03x18 (4.8)

for −0.5 ≤ xi ≤ 0.5. This test function is from Welch et al. (1992). As a design site, a 20-dimensional
50 runs Latin hypercube design is used. One thousand random points on the domain were used to
compute the rmspe.
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Figure 4: Residual plots of prediction models for test function 3 with 1,000 random prediction points. Plots for
M7 and M9 are omitted because they are the same for M6 and M8, respectively. See Table 1 for a description of

the models (M1–M10).

Table 4 shows the selected prediction models and their performance. Based on rmspe, M6 and M7
are the same and work best. The improvement over M5 is 58.9%. Based on BIC, M8 and M9 are the
same and work best. Figure 4 shows the residual plots of the models in which the plot of M6 looks
better than others.

4.4. Test function 4

y = 2π

√
x1

x4 + x2
2

x5 x3
x7

x6
V2

, (4.9)

where

V =
x2

2x4

(√
A2 + 4k

x5x3

x7
x6 − A

)
, (4.10)

A = x5x2 + 19.62x1 −
x4x7

x2
, (4.11)

where the response y is the time it takes to complete one cycle (sec); x1 ∈ [30, 60] is the piston weight
(kg); x2 ∈ [0.005, 0.02] is the piston surface area (m2); x3 ∈ [0.002, 0.01] is the initial gas volume
(m3); x4 ∈ [1,000, 5,000] is the spring coefficient (N/m); x5 ∈ [90,000, 110,000] is the atmospheric
pressure (N/m2); x6 ∈ [290, 296] is the ambient temperature (K); x7 ∈ [340, 360] is the filling gas
temperature (K). This piston simulation function is from Moon (2010) and the Virtual Library of
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Table 5: Result for test function 4

Model β θ rmspe BIC
M1 β0 θc 0.01705 −779.3298
M2 β0 all θ’s 0.00296 −1354.8725
M3 all β’s θc 0.01999 −823.0619
M4 all β’s all θ’s 0.00170 −1581.1772
M5 β0 θ1, θ2, θ3, θ4, θ5 0.00082 −1768.6100
M6 β0, β1, β4, β6 θ1, θ2, θ3, θ4, θ5 0.00069 −1943.1533
M7 β0, β1, β4, β6 θ1, θ2, θ3, θ4, θ5 0.00069 −1943.1533
M8 β0, β1, β4, β6 θ1, θ2, θ3, θ4, θ5 0.00069 −1943.1533
M9 β0, β1, β4, β6 θ1, θ2, θ3, θ4, θ5 0.00069 −1943.1533
M10 all β’s θ1, θ2, θ3, θ4, θ5 0.00070 −1923.4304

The others are the same as Table 2.
rmspe = root mean squared prediction error; BIC = Bayesian information criterion.
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ŷ

R
es

id
ua

l

0.6 0.8 1.0 1.2 1.4

−
0.

02
0.

00
0.

01
0.

02

M6

ŷ
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Figure 5: Residual plots of prediction models for test function 4 with 1,000 random prediction points. Plots for
M7, M8, and M9 are omitted because these are the same for M6. See Table 1 for a description of the models

(M1–M10).

Simulation Experiment (Surjanovic and Bingham, 2015) that models the circular motion of a piston.
As a design site, a 7-dimensional 200 runs Latin-hypercube design is used. One thousand random
points on the domain computed the rmspe.

Table 5 shows the selected prediction models and performance. Based on rmspe and BIC, M6,
M7, M8, and M9 are the same and work best. The improvement over M5 is 15.9%. Figure 5 shows
the residual plots of the models, in which the plot of M6 looks best.

4.5. Real example: MARTHE dataset

The MARTHE dataset is realization of the MARTHE code, which is about numerical simulation of
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Table 6: Result for MARTHE dataset

Model β θ rmspe BIC
M1 β0 θc 0.3550 95.2770
M2 β0 all θ’s 0.2838 2.8409
M3 all β’s θc 0.3339 123.0978
M4 all β’s all θ’s 0.3072 52.0115
M5 β0 θ2, θ3, θ4, θ6, θ14 , θ15, θ19, θ20 0.2803 −6.3102
M6 β0, β1, β2, β3 , β6, β9, β15, β19, β20 θ2, θ3, θ4, θ6, θ14 , θ15, θ19, θ20 0.2817 5.7842
M7 β0, β1, β6, β12, β15, β19 , β20 θ2, θ3, θ4, θ6, θ14 , θ15, θ19, θ20 0.2822 1.0033
M8 β0, β2, β12, β15 , β20 θ2, θ3, θ4, θ6, θ14 , θ15, θ19, θ20 0.2779 −7.7810
M9 β0, β2, β15, β20 θ2, θ3, θ4, θ6, θ14 , θ15, θ19, θ20 0.2764 −11.9247

M10 β0, β2, β6, β13, β14, β15, β20 θ2, θ3, θ4, θ6, θ14 , θ15, θ19, θ20 0.2769 −5.7742

The others are the same as Table 2.
rmspe = root mean squared prediction error; BIC = Bayesian information criterion.

Strontium-90 transport in the upper aquifer of the “Kurchatov Institute” radiation waste disposal site.
The computer code is not accessible; therefore, we obtained the dataset from the Virtual Library of
Simulation Experiment (see Surjanovic and Bingham, 2015). The data consists of 300 observations
with 20 input variables and 10 output dimensions. In this study, we only in 20 input variables and the
first output variable ‘p102K’. Two hundred observations are used for training data to build models,
and the other 100 observations are used for test data to compute rmspe.

Table 6 shows the selected prediction models and performance. M9 is best based on rmspe and
BIC. The improvement over M5 is 1.4%.

5. Summary and discussion

This study proposes an algorithm to build a good prediction model. It is a post-work of the algorithm
by Welch et al. (1992). It selects some β’s while the pre-selected θ’s are fixed. Using four test
functions and one real data example, we illustrated the superiority of the proposed models over other
models. Forward selection and backward elimination of β’s based on the likelihood ratio test or BIC
work well; however, the models built by the algorithm by Welch et al. (1992) and by the Lasso guided
selection did not work well.

We tried several alternative approaches during the progress of this study as follows. In addition,
we should study all of them further despite the problems faced in our brief experience to reach a
conclusion on which is the best.

1. β first approach: Selecting β’s first (and then selecting θ’s) did not work well.

2. θ backward elimination: The strategy that estimating all θ’s first, and eliminate some θ’s, and then
select some β’s seems good. Based on our experience, its performance is fair compared to the
proposed algorithm; however, it is computationally expensive compared to Welch algorithm and
our proposed methods.

3. θ Forward selection: Select θ one-by-one method like as the forward selection algorithm in the
ordinary regression model building. This did not work well.

4. Pingpong approach: Select one θ, and select one β, and select another one θ, and select another
one β. It seems poor; however, still needs a future study.

5. Backward elimination from the full model: After estimating all β’a and all θ’s from the Model 4,
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compute Wald’s t-statistics (T = θ̂/SE(θ̂)) to eliminate some β’s and θ’s, and continue this until no
more deletion. The Fisher information matrix may be required to obtain SE(θ̂).

Sample size is an important setting in the test function study. To reliably evaluate a stable per-
formance, we think a large sample is especially required when the dimension of input variables is
high. When there are measurement errors in computer codes or in physical experiments, we set the
parameter γ in (1.3) as positive. So our model selection methods in GPRM can also be applicable to
physical or computer experiments with the measurement error. For a practical situation, we cannot
compute the prediction error as we did in the test function study. Therefore, a leave-one-out or k-fold
cross-validation version of prediction error is required. Finally, we may go further to select or elim-
inate more θ’s and β’s from the models (M6–M9) considered in this paper that may provide a better
model in the sense of less prediction error. However, these remain topics for future study.
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