• Title/Summary/Keyword: Beryllium-10

Search Result 71, Processing Time 0.024 seconds

Beryllium oxide utilized in nuclear reactors: Part I: Application history, thermal properties, mechanical properties, corrosion behavior and fabrication methods

  • Ming-dong Hou;Xiang-wen Zhou;Bing Liu
    • Nuclear Engineering and Technology
    • /
    • v.54 no.12
    • /
    • pp.4393-4411
    • /
    • 2022
  • In recent years, beryllium oxide has been widely utilized in multiple compact nuclear reactors as the neutron moderator, the neutron reflector or the matrix material with dispersed nuclear fuels due to its prominent properties. In the past 70 years, beryllium oxide has been studied extensively, but rarely been systematically organized. This article provides a systematic review of the application history, thermal properties, mechanical properties, corrosion behavior and fabrication methods of beryllium oxide. Data from previous literature are extracted and sorted out, and all of these original data are attached as the supplementary material, so that subsequent researchers can utilize this paper as a database for beryllium oxide research in reactor design or simulation analysis, etc. In addition, this review article also attempts to point out the insufficiency of research on beryllium oxide, and the possible key research areas about beryllium oxide in the future.

A Study on the Zircaloy-4 Brazing with Beryllium Filler Metal for the Nuclear Fuel (베릴륨 용가재를 사용한 핵연료피복재 지르칼로이-4 브레이징에 대한 연구)

  • 고진현;김형수
    • Journal of Welding and Joining
    • /
    • v.11 no.4
    • /
    • pp.70-78
    • /
    • 1993
  • An attempt was made to investigate the effect of brazing time on microstructure, microhardness, and corrosion of Zircaloy -4as well as the beryllium diffusion into its sheet. The sheets were coated with beryllium and brazed at $1020^{\circ}C$ for 20-40 minutes in $2{\times}10^{-5}$ torr vacuum atmosphere. 1. Microstructurally the brazed zone was largely divided into three regions: a region of continuous or partially formed of eutectic liquid films along grain boundaries; a region of precipitation in both grains and grain boundaries; a region of elongated wide structure of .alpha.-laths, which was not affected by beryllium. 2. Due to the precipitates, the beryllium-migrated region was hardened and the width of the hardened region increased with increasing brazing time. 3. Beryllium brazed Zircaloy -4 sheets showed a higher corrosion rate than those of as-received and heat-treated at a brazing temperature. 4. Diffusion coefficient of beryllium into Zircaloy -4 at $1020^{\circ}C$ for 30 minutes was $7.67{\times}10^{-7}cm^2/sec.$ It seemed that Be penetrated Zircaloy -4 by forming eutectic liquid films along grain boundaries in the proximity of Be/Zr interface and it, thereafter, diffused into Zircaloy mainly by interstitial solid solution.

  • PDF

Modeling and characterization of beryllium reflector elements under irradiation conditions

  • Ahmed H. Elhefnawy;Mohamed A. Gaheen;Hanaa H. Abou Gabal;Mohamed E. Nagy
    • Nuclear Engineering and Technology
    • /
    • v.55 no.12
    • /
    • pp.4583-4590
    • /
    • 2023
  • This study aims at modeling the beryllium reflector poisoning under neutron irradiation conditions and calculating the impact of beryllium poisoning on the core parameters of ETRR-2 research reactor. The CITVAP code was used to calculate the neutron flux and parameters of ETRR-2 core with beryllium reflector elements. The neutron flux in each reflector element was calculated to solve the modeling equations for the atomic densities of lithium-6 (6Li), tritium-3 (3H), and helium-3 (3He) using the BERYL program. The results are discussed based on CITVAP calculations of the core excess reactivity and cycle length Full Power Days (FPD). Possible solutions to minimize the degradation due to beryllium poisoning are also discussed and compared based on calculations.

Effects of Beryllium on Human Serum Immunoglobulin and Lymphocyte Subpopulation

  • Kim, Ki-Woong;Kim, DaeSeong;Won, Yong Lim;Kang, Seong-Kyu
    • Toxicological Research
    • /
    • v.29 no.2
    • /
    • pp.115-120
    • /
    • 2013
  • To investigate the effects of short-term exposure of beryllium on the human immune system, the proportion of T-lymphocytes such as CD3+, CD4+, CD8+, CD95, and NK cells, and the proportion of B cells and $TNF{\alpha}$ level in peripheral blood and immunoglobulins in the serum of 43 exposed workers and 34 healthy control subjects were studied. External exposure to beryllium was measured by atomic absorption spectrometer as recommended by the NIOSH analytical method 7300. T lymphocyte subpopulation analysis was carried out with flow cytometer. The working duration of exposed workers was less than 3 months and the mean ambient beryllium level was $3.4{\mu}g/m^3$, $112.3{\mu}g/m^3$, and $2.3{\mu}g/m^3$ in molding (furnace), deforming (grinding), and sorting processes, respectively (cited from Kim et al., 2008). However, ambient beryllium level after process change was non-detectable (< $0.1{\mu}g/m^3$). The number of T lymphocytes and the amount of immunoglobulins in the beryllium-exposed workers and control subjects were not significantly different, except for the total number of lymphocytes and CD95 (APO1/FAS). The total number of lymphocytes was higher in the beryllium-exposed individuals than in the healthy control subjects. Multiple logistic regression analysis showed lymphocytes to be affected by beryllium exposure (odd ratio = 7.293; p<0.001). These results show that short-term exposure to beryllium does not induce immune dysfunction but is probably associated with lymphocytes proliferation.

Comparison of dental porcelain baking methods by base-alloy and bonding strength by thermocycling (Base-Alloy에 따른 치과 도재의 소성방법과 열순환에 따른 결합강도 비교)

  • Kim, Im-Sun;Min, Kyung-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.2
    • /
    • pp.772-779
    • /
    • 2010
  • This study measured the bonding strength of various porcelain prosthesis materials before and after thermocycling to select prosthesis materials that can maximize beauty and tolerance. To measure bonding strength, various porcelain materials were baked on with-Beryllium metals, non-Beryllium metals 8group and Zirconia 1 group among commercially available base alloys, and measured the bonding strength was measured before and after thermocycling. The findings of this study are as follows: 1) PTM(press-to-metal) porcelain non-Beryllium metal showed the, highteat bonding strength each 73.2MPa, 59.2MPa before and after thermocycling. 2) The porcelain materials baked on non-Beryllium metal showed higher bonding strength before and after thermocycling than those baked on with-Beryllium metal. 3) Zirconia products showed the lowest 38.7MPa bonding strength before and after thermocycling.

Investigation of Deep Drawability and Product Qualities of Ultra Thin Beryllium Copper Sheet Metal (베릴륨동 극박판의 드로잉 성형성과 품질특성 연구)

  • Park, S.S.;Hwang, K.B.;Kim, J.B.;Kim, J.H.
    • Transactions of Materials Processing
    • /
    • v.19 no.3
    • /
    • pp.179-184
    • /
    • 2010
  • The present study is focused on the deep drawability and product qualities of ultra thin beryllium copper sheet metal. The goal of this research is to investigate the limit drawing ratio in deep drawing of ultra thin beryllium copper metal. For the experiment, beryllium copper(C1720, $50{\mu}m$ in thickness) is used. Tensile test are also carried out to find out the material properties. Deep drawing experiments are carried out in Universal Testing Machine(UTM) to obtain limit drawing ratio. Deep drawing tests are carried out for various specimen sizes. Teflon film is used as a lubricant and constant blank holding force is imposed. Sheet thickness and surface hardness are measured along radial direction after deep drawing. Thickness is measured using optical microscope. For beryllium copper(C1720), the maximum LDR of 2.4 is obtained when the die shoulder radius is 20 or 30 times of sheet thickness.

Molecular Orbital Calculation for Polymeric Beryllium Hydride, Polyeithylene and Polymeric Boron Hydride According to the Pseudo-Lattice Method

  • Oh, Seok-Heon;Jhang, Man-Chai;Jhon, Mu-Shik
    • Bulletin of the Korean Chemical Society
    • /
    • v.5 no.1
    • /
    • pp.37-41
    • /
    • 1984
  • The pseudolattice calculations in the CNDO/2 level of approximation are carried out for polymeric beryllium hydride, polyethylene and polymeric boron hydride. Since there is no evidence on the geometry for polymeric boron hydride, the two possible geometries are assumed. One is a polyethylene-type geometry and the other is a polymeric beryllium hydride-type geometry. In order to compare their relative stability, we calculate polyethylene and polymeric beryllium hydride and then compare with polymeric boron hydride having the assumed structures. The total energy calculation indicates that a polymeric beryllium bydride-type geometry is more stable than a polyethylene-type geometry. Our results obtained for polyethylene are in good agreement with those given by CNDO/2 crystal orbital. From the convergence problem with respect to the number of unit cells (M), the calculation with value of 4 for M can be considered to give the convergence limit results.

Target-Moderator-Reflector system for 10-30 MeV proton accelerator-driven compact thermal neutron source: Conceptual design and neutronic characterization

  • Jeon, Byoungil;Kim, Jongyul;Lee, Eunjoong;Moon, Myungkook;Cho, Sangjin;Cho, Gyuseong
    • Nuclear Engineering and Technology
    • /
    • v.52 no.3
    • /
    • pp.633-646
    • /
    • 2020
  • Imaging and scattering techniques using thermal neutrons allow to analyze complex specimens in scientific and industrial researches. Owing to this advantage, there have been a considerable demand for neutron facilities in the industrial sector. Among neutron sources, an accelerator driven compact neutron source is the only one that can satisfy the various requirements-construction budget, facility size, and required neutron flux-of industrial applications. In this paper, a target, moderator, and reflector (TMR) system for low-energy proton-accelerator driven compact thermal neutron source was designed via Monte Carlo simulations. For 10-30 MeV proton beams, the optimal conditions of the beryllium target were determined by considering the neutron yield and the blistering of the target. For a non-borated polyethylene moderator, the neutronic properties were verified based on its thickness. For a reflector, three candidates-light water, beryllium, and graphite-were considered as reflector materials, and the optimal conditions were identified. The results verified that the neutronic intensity varied in the order beryllium > light water > graphite, the compacter size in the order light water < beryllium < graphite and the shorter emission time in the order graphite < light water < beryllium. The performance of the designed TMR system was compared with that of existing facilities and were laid between performance of existing facilities.

Beryllium oxide utilized in nuclear reactors: Part II, A systematic review of the neutron irradiation effects

  • Ming-dong Hou;Xiang-wen Zhou;Bing Liu
    • Nuclear Engineering and Technology
    • /
    • v.55 no.2
    • /
    • pp.408-420
    • /
    • 2023
  • Beryllium oxide (BeO) is being re-emphasized and utilized in Micro Modular Reactors (MMR) because of its prominent nuclear and high temperature properties in recent years. The implications of the research about effects of neutron irradiation on the microstructure and properties of BeO are significant. This article comprehensively reviews the effects of neutron irradiation on BeO and proposes the maximum permissible neutron doses at different temperatures for BeO without cracks in appearance according to the data in the previous literature. This maximum permissible neutron dose value has important reference significance for the experimental study of BeO. The effects of neutron irradiation on the thermal conductivity and flexural strength of BeO are also discussed. In addition, microstructure evolution of irradiated BeO during post-irradiation annealing is summarized. This review article has important implications for the application of BeO in MMR.

The study of Shear Bond Strength on recasting of non-beryllium non-precious alloy for Porcelain between Metal (베릴륨이 포함되지 않은 도재용착주조관용 비 귀금속 합금의 재사용에 따른 금속과 도재간의 전단결합강도에 관한 연구)

  • Kim, So-Ri;Kim, Woong-Chul;Kim, Hae-Young;Kim, Ji-Hwan
    • Journal of Technologic Dentistry
    • /
    • v.35 no.1
    • /
    • pp.43-48
    • /
    • 2013
  • Purpose: This study aimed to investigate the shear bond strength for non-precious alloy castings without beryllium, which has been used repeatedly for economical reason. Methods: The Schmitz-Schulmeyer test method was used to evaluate the shear bond strength between the non-beryllium Ni-Cr alloy Vera Bond 2V(AlbaDent, Inc. USA) and the Ceramco 3(Dentstply, York, PA, USA) porcelain powder. The maximum loading and shear bond strength were measured. The average shear strength(MPa) was analyzed with the one-way ANOVA and the Tukey's test( =.05). The fracture specimens were examined using Microscope to determine the failure pattern. Results: The mean shear bond strengths(SD) in MPa were group A(100% new metal) control 28.72(3.31); group B(50% new + 50% reused) 27.28(1.13); group C(all reused) 26.61(5.47). Microscope examination showed that group A and B specimens presented mixed failure, and group C specimens showed adhesive failure. Conclusion: In conclusion, forward this non-precious alloy dose not contain beryllium for how should use a more systematic study and for future advanced research is performed giving effect to be considered desirable.