• Title/Summary/Keyword: Berthing speed

Search Result 39, Processing Time 0.024 seconds

Vision Sensor and Deep Learning-based Around View Monitoring System for Ship Berthing (비전 센서 및 딥러닝 기반 선박 접안을 위한 어라운드뷰 모니터링 시스템)

  • Kim, Hanguen;Kim, Donghoon;Park, Byeolteo;Lee, Seung-Mok
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.15 no.2
    • /
    • pp.71-78
    • /
    • 2020
  • This paper proposes vision sensors and deep learning-based around view monitoring system for ship berthing. Ship berthing to the port requires precise relative position and relative speed information between the mooring facility and the ship. For ships of Handysize or higher, the vesselships must be docked with the help of pilots and tugboats. In the case of ships handling dangerous cargo, tug boats push the ship and dock it in the port, using the distance and velocity information receiving from the berthing aid system (BAS). However, the existing BAS is very expensive and there is a limit on the size of the vessel that can be measured. Also, there is a limitation that it is difficult to measure distance and speed when there are obstacles near the port. This paper proposes a relative distance and speed estimation system that can be used as a ship berthing assist system. The proposed system is verified by comparing the performance with the existing laser-based distance and speed measurement system through the field tests at the actual port.

A Study on the Berthing Energy considering the shallow effect of Added mass Acting on a Large Ship (천수역 선체 부가질량을 고려한 대형 선박의 접안에너지 산출에 관한 연구)

  • Lee Yun-Sok;Kim Chol-Seong;Kong Gil-Young;Lee Sang-Min
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2004.05b
    • /
    • pp.107-112
    • /
    • 2004
  • In order to improve the safety r! ship berthing and the efficiency r! berth operation in the harbour, the berthing energy acting on a ship in berthing maneuver need to be estimated properly. The berthing energy is used as one q the criteria to determine the maximum permissible load of fender as well as important factors to establish the berthing speed and the required power r! tug-beat for pilot and ship operator. In this study, some problems r! present the method of berthing energy are discussed on the basis of the hydrodynamic aspects. Then, series calculations of berthing energy are carried out considering the effect of water depth on added mass and the ship shape for container series from 1,600TEU to 12,000TEU.

  • PDF

A Study on the Evaluation of Berthing Energy of Large-Sized Container Ships with the effect of Shallow Waters (대형 컨테이너선의 천수역 영향을 고려한 접안에너지 산출에 관한 연구)

  • Kim Chol-Seong;Lee Yun-Sok;Lee Chung-Ro;Cho Ik-Soon
    • Journal of Navigation and Port Research
    • /
    • v.29 no.8 s.104
    • /
    • pp.673-678
    • /
    • 2005
  • In order to improve the safety of ship berthing and the efficiency of berth operation in the harbour, the berthing energy acting on a ship in berthing maneuver need to be estimated properly. The berthing energy is used as one of the criteria to determine the maximum permissible load q{ fender as well as important factors to establish the berthing speed and the required power of tug-boat for pilot and ship operator. Some problems of berthing energy are discussed on the basis of the hydrodynamic aspects. Then, series calculations of berthing energy are carried out considering the effect of water depth on added mass and the ship shape for container series from 1,600TEU to 12,000TEU.

On the Estimation of Ship's Approach Speed Limit to the Pier to Prevent Breaking of Mooring Rope (계류삭 파단 방지를 위한 선박의 한계치 접안 속력 추정에 관한 연구)

  • Kim, Dae-Jeong;Lee, Chun-Ki;Yim, Jeong-Bin
    • Journal of Navigation and Port Research
    • /
    • v.42 no.6
    • /
    • pp.388-394
    • /
    • 2018
  • When a ship is berthing on the pier using a mooring rope, excessive ship speeds may cause accidents where mooring rope is cut off. In order to prevent the mooring rope from breaking, there is need to know the approach speed limit of the ship. The purpose of this study is to estimate the berthing speed limit of a ship to prevent mooring fracture. Focus will be made to when the speed of the ship is unknown. In this study, we propose a method and procedure for estimating the berthing-speed limit based on the theory of ship resistance and the elasticity of the mooring rope. This method was found to be effective as it was observed that the mooring rope cannot be broken when it is estimated that the berthing-speed of a 135K LNG vessel, IWRC, and $6{\times}36$ steel wire mooring rope. The method proposed in this study will significantly contribute to preventing actual accidents related to mooring lines.

A Study of the Automatic Berthing System of a Ship Using Artificial Neural Network (인공신경망을 이용한 선박의 자동접안 제어에 관한 연구)

  • Bae, Cheol-Han;Lee, Seung-Keon;Lee, Sang-Eui;Kim, Ju-Han
    • Journal of Navigation and Port Research
    • /
    • v.32 no.8
    • /
    • pp.589-596
    • /
    • 2008
  • In this paper, Artificial Neural Network(ANN) is applied to automatic berthing control for a ship. ANN is suitable for a maneuvering such as ship's berthing, because it can describe non-linearity of the system. Multi-layer perceptron which has more than one hidden layer between input layer and output layer is applied to ANN. Using a back-propagation algorithm with teaching data, we trained ANN to get a minimal error between output value and desired one. For the automatic berthing control of a containership, we introduced low speed maneuvering mathematical models. The berthing control with the structure of 8 input layer units in ANN is compared to 6 input layer units. From the simulation results, the berthing conditions are satisfied, even though the berthing paths are different.

On the Ship's Berthing Control by introducing the Fuzzy Neural Network (선박 접리안의 퍼지학습제어)

  • 구자윤;이철영
    • Journal of the Korean Institute of Navigation
    • /
    • v.18 no.2
    • /
    • pp.69-81
    • /
    • 1994
  • Studies on the ship's automatic navigation & berthing control have been continued by way of solving the ship's mathematical model, but the results of such studies have not reached to our satisfactory level due to its non-linear characteristics at low speed. In this paper, the authors propose a new berthing control system which can evaluate as closely as cap-tain's decision-making by using the FNN(Fuzzy Neural Network) controller which can simulate captain's knowledge. This berthing controller consists of the navigation subsystem FNN controller and the berthing subsystem FNN controller. The learning data are drawn from Ship Handling Simulator (NavSim NMS-90 MK Ⅲ) and represent the ship motion characteristics internally. According to learning procedure, both FNN controllers can tune membership functions and identify fuzzy control rules automatically. The verified results show the FNN controllers effective to incorporate captain's knowledge and experience of berthing.

  • PDF

A Ship Berthing System Design by Cooperating with Tugboats and Dampers (터그보트와 댐퍼 협조제어를 통한 선박접안시스템 설계에 관한 연구)

  • Tran, Anh-Minh D.;Ji, S.W.;Kim, Y.B.
    • Journal of Drive and Control
    • /
    • v.11 no.3
    • /
    • pp.7-13
    • /
    • 2014
  • Everyday about 90% of cargos are delivered by ships, and thousands of vessels enter and depart the international container harbors such as Shanghai, Singapore, Hong Kong, Busan, Rotterdam, etc. Maneuvering at harbor is known as the most sophisticated and difficult procedure, because the effectiveness of actuators during low speed berthing is reduced. In this paper, a new berthing method is discussed. Tugboats are combined with damper systems to ensure safe berthing. A mathematical model describing the interaction between unactuated ship, tugboats and damper systems is presented. An optimal controller is designed to maneuver the ship without oscillation and overshoot. MCL (Marine Cybernetics Lab) model ship is used to evaluate the efficiency of the proposed approach through MatLab simulation.

On the Ship's Berthig Control by introducing the Fuzzy Neural Network (선박 접이안의 퍼지학습제어)

  • 구자윤;이철영
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 1994.04a
    • /
    • pp.55-67
    • /
    • 1994
  • Studies on the ship's automatic navigation & berthing control have been continued by way of solving the ship's mathematical model but the results of such studies have not reached to our satisfactory level due to its non-linear characteristics ar low speed. In this paper the authors propose a new berthing control system which can evaluate as closely as captain's decision-making by using the FNN(Fuzzy Neural Network) controller which can simulate captain's decision-making by using the FNN(Fuzzy neural Network) controller which can simulate captain's knowledge. This berthing controller consists of the navigation subsystem FNN controller and the berthing subsystem FNN controller. The learning data are drawn from Ship Handling Simulator (NavSim NMS90 MK III) and represent the ship motion characteristics internally According to learning procedure both FNN controllers can tune membership functions and identify fuzzy control rules automatically The verified results show the FNN controllers effective to incorporate captain's knowledge and experience of berthing.

  • PDF

A Study on Heuristic Berthing System Design with Winch and Damper Assistance

  • Kim, Young-Bok;Kim, Chang-Woo;Ji, Sang-Won
    • Journal of Power System Engineering
    • /
    • v.22 no.6
    • /
    • pp.20-27
    • /
    • 2018
  • Vessel maneuvering problem in the harbor area is generating considerable interests in terms of marine cybernetics. In this sense, the vessel is operated and moves at ultimately low or zero speed in shallow water area. So the vessel is usually aided by the cooperation with thrusters, main propulsion system, tugboats and pilots, etc. In this paper, we suggest a new vessel berthing technique using dampers and winches as a solution for excessively complicate and dangerous berthing work. In the proposed berthing method, in order to manipulate the actuators (winches and dampers), a simple and heuristic control strategy is applied for a basic experiment. Finally, experiments are conducted to verify the effectiveness of the proposed automatic vessel berthing strategy based on the heuristic control method.

Ship nonlinear-feedback course keeping algorithm based on MMG model driven by bipolar sigmoid function for berthing

  • Zhang, Qiang;Zhang, Xian-ku;Im, Nam-kyun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.5
    • /
    • pp.525-536
    • /
    • 2017
  • Course keeping is hard to implement under the condition of the propeller stopping or reversing at slow speed for berthing due to the ship's dynamic motion becoming highly nonlinear. To solve this problem, a practical Maneuvering Modeling Group (MMG) ship mathematic model with propeller reversing transverse forces and low speed correction is first discussed to be applied for the right-handed single-screw ship. Secondly, a novel PID-based nonlinear feedback algorithm driven by bipolar sigmoid function is proposed. The PID parameters are determined by a closed-loop gain shaping algorithm directly, while the closed-loop gain shaping theory was employed for effects analysis of this algorithm. Finally, simulation experiments were carried out on an LPG ship. It is shown that the energy consumption and the smoothness performance of the nonlinear feedback control are reduced by 4.2% and 14.6% with satisfactory control effects; the proposed algorithm has the advantages of robustness, energy saving and safety in berthing practice.