• Title/Summary/Keyword: Benzene dimer

Search Result 12, Processing Time 0.022 seconds

Isolation and Cultural Characteristics of Styrene Dimer [Endocrine Disrupter] Biodegrading Microorganism (Styrene dimer [환경호르몬 물질] 분해균주의 분리 및 배양특성)

  • ;;;Saido Katsuhiko
    • KSBB Journal
    • /
    • v.19 no.4
    • /
    • pp.315-320
    • /
    • 2004
  • We examined the culture conditions and degrading characteristics of styrene dimer (endocrine disrupter) using microorganism. The isolated microbe were consisted of 3 kinds of strain. The strains were identified to Pseudomonas sp. and Klebsiella pneumoniae by API 20E kit, but one was not identified. Single strain was not grown on the C-medium containing styrene dimer. However the complex strain YH3 could grow and we confirmed it by the broth color and O.D$_{660nm}$ (optical density 660 nm). The optimal culture conditions of complex strain YH3 were 35$^{\circ}C$, 1,000 ppm (v/v) of styrene dimer and pH 7.0, respectively. In tolerance test against the organic solvents, the complex strain YH3 could grow above log P=3.1, and could degrade ethyl benzene and 2,4-D, one kind of herbicide. As a result of TLC (Thin Layer Chromatography) analysis, we confirmed that the metabolite of styrene dimer was created by YH3 after 5th day, but not at control samples.

A Theoretical Study of the Formation of Benzene Excimer: Effects of Geometry Relaxation and Spin-state Dependence

  • Kim, Dongwook
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.9
    • /
    • pp.2738-2742
    • /
    • 2014
  • Geometry relaxation effects on the formation of benzene excimer were investigated by means of ab initio calculation at SOS-CIS($D_0$)/aug-cc-pVDZ level. In the case of T-shaped dimer configuration, intermolecular interactions in the excited states are found to be nearly the same as those in the ground state and structural deformations are limited within a single molecule; the geometry relaxation effects are then negligible and singlet-triplet energy gap remains constant. As for face-to-face eclipsed dimer, on the other hand, both molecules undergo structural change. As a result, intermolecular interactions in the excited states are significantly different than those in the ground state. Although the intermolecular distances obtained from potential energy curve calculation with frozen molecular structures are in qualitative agreement, the excited-state binding energies are notably overestimated with respect to those at optimized structures. In particular, the effects are calculated to be larger in $T_1$ state and hence singlet-triplet energy gap, which reduces markedly in this configuration, is underestimated without relaxation.

Hydroxy-Substituted Polyenaminonitrile as a Soluble Precursor for Rigid-Rod Polybenzoxazole

  • Kim, Ji Heung;Lee, Jae Gwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.9
    • /
    • pp.999-1004
    • /
    • 2001
  • (1-Chloro-2,2-dicyanovinyl)benzene or 1,4-bis(1-chloro-2,2-dicyanovinyl)benzene was reacted with 2-amino-phenol to give the model compound, hydroxy enaminonitrile, which was found to undergo thermal cyclization reaction to form the corresponding benzoxazole. This intramolecular cyclization reaction is expected to occur through nucleophilic attack to electropositive enamine carbon by ortho-hydroxy group on the phenyl ring, which is accompanied by the release of neutral malononitrile through rearrangement. From each bifunctional monomer, o-hydroxy substituted polyenaminonitrile was prepared and characterized as a new precursor polymer for well-known aromatic polybenzoxazole. Also the unusual macrocyclic dimer formation from the 1,4-bis(1-chloro-2,2-dicyanovinyl)benzene and 2,2-bis(3-amino-4-hydroxyphenyl)hexafluoropropane polymerization reaction system was discussed. The thermal cyclization reactions and the properties of polymers were investigated using FT-IR and thermal analysis (DSC & TGA).

Theoretical Investigation for the Molecular Structures and Dimerization Energies for Complexes of H2O-C6H6 Dimer (물(H2O)과 벤젠(C6H6) 이합체의 분자 구조 및 결합 에너지에 관한 이론 연구)

  • Sun, Ju-Yong;Kim, Seung-Joon
    • Journal of the Korean Chemical Society
    • /
    • v.53 no.1
    • /
    • pp.7-16
    • /
    • 2009
  • The global minimum structures of the benzene-water, Bz-$H_2O$ and benzene-water cation complex, [Bz-$H_2O]^+$ have been investigated using ab initio and density functional theory(DFT) with very large basis sets. The highest levels of theory employed in this study are B3LYP/cc-pVQZ for geometry optimization and MP2/aug-cc-pVTZ//B3LYP/aug-cc-pVTZ for binding energy. The harmonic vibrational frequencies and IR intensities are also determined at the various levels of theory to confirm whether the structure of water complex is affected by the presence of benzene. The binding energies of Bz-$H_2O$ (N-1) structure are predicted to be 3.92 kcal/mol ($D_e$) and 3.11 kcal/mol ($D_0$) after the zero-point vibrational energy correction at the MP2/cc-pVQZ//B3LYP/cc-pVQZ level of theory. The binding energies of [Bz-$H_2O]^+$ (C-1) structure are predicted to be 9.06 kcal/mol for $D_e$ and 7.82 kcal/mol for $D_0$ at the same level of theory.

Effect of Organic Residue on the Continuous Pyrolysis of Waste Polystyrene (연속식 폐 EPS 열분해 반응에 대한 잔류물의 영향)

  • Yoon, Byung Tae;Kim, Seong Bo;Lee, Sang Bong;Choi, Myoung Jae
    • Korean Chemical Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.125-128
    • /
    • 2005
  • Oil formation rate, composition of crude oil and formation of side products such as ${\alpha}-methyl$ styrene, ethyl benzene, benzene, toluene, dimer and trimer on thermal degradation of polystyrene were affected by various factors. Especially, formation of organic residue formed during reaction gave an important influence on formation of oil and composition of crude oil. Also, composition of formed crude oil showed a significant difference on reaction time. These results were caused by organic residue and carbonized solid formed during continuous reaction. Increase of residue and carbonized solid gave a decrease of yield of styrene and an increase of formation of ${\alpha}-methyl$ styrene, ethyl benzene, benzene, toluene. New reaction system was proposed for continuous operation at the thermal degradation of polystyrene.

벤젠 이합체와 그 치환체의 양자역학을 통한 π-π interaction의 계산

  • Jo, Ji-Seong;Cho, Art.
    • Proceeding of EDISON Challenge
    • /
    • 2014.03a
    • /
    • pp.385-397
    • /
    • 2014
  • 신약을 개발하거나 단백질 구조를 예측하는데 Molecular Mechanics (MM)의 방법을 사용한다. 하지만, MM 만으로는 자연현상에서 일어나는 결과를 정확하게 기술하기 어렵다. 본 연구는 기존의 MM 방법으로는 정확히 예측이 불가능한 비 공유결합 중 하나인 ${\pi}-{\pi}$ interaction을 양자역학 계산을 통해 정확한 예측이 가능한지 보았다. ${\pi}-{\pi}$ interaction 이란 생체 내, 의약 화합물에서 발견되는 결합이기 때문에, 단백질과 결합하는 구조의 예측이 중요하다고 할 수 있다. 본 실험은 ${\pi}-{\pi}$ interaction을 갖는 Sandwich, T shape, 그리고 Parallel displaced 세 가지 모형을 가지고 양자역학 계산을 수행하였다. 양자역학 계산은 DFT의 세가지 함수 M06_2X, M05_2X, B3LYP를 이용하였다. 실험결과에서 세 가지 함수가 각기 다른 결과를 보였는데, M06_2X의 결과에서 ${\pi}-{\pi}$ interaction을 더 정확하게 계산하였다. 이러한 결과를 바탕으로, 양자역학의 방법을 통해 MM에서는 예측이 불가능한 ${\pi}-{\pi}$ interaction을 계산 할 수 있고 이 부분을 고려하여 화합물 간의 결합구조를 예측을 향상시킬 수 있다.

  • PDF

The Continuous Pyrolysis of Waste Polystyrene using Wetted-Wall Type Reactor (Wetted-Wall Column 형 반응기를 이용한 폐 EPS 연속 열분해반응)

  • Han, Myung Sook;Han, Myung Wan;Yoon, Byung Tae;Kim, Seong Bo;Choi, Myoung Jae
    • Korean Chemical Engineering Research
    • /
    • v.45 no.4
    • /
    • pp.396-399
    • /
    • 2007
  • Organic residue and carbonized solid producing from the thermal degradation gave a influence on oil conversion, formation of styrene and side products such as ${\alpha}-methyl$ styrene, ethyl benzene, dimer. Thus, new reaction system using wetted-wall type reactor was proposed and examined on influence of various parameters such as reaction temperature, feeding rate and removal velocity of formed vapor. Optimum condition were obtained from continuous thermal degradation using wetted-wall type reactor and styrene was continuously obtained as the yield up 65%.

Reaction Kinetic Study on Pyrolysis of Waste Polystyrene using Wetted Column Reactor (Wetted Column 반응기를 이용한 폴리스티렌 열분해 반응속도론적 연구)

  • You, Young Gil;Yoon, Byung Tae;Kim, Seong Bo;Choi, Myoung Jae;Choi, Cheong Song
    • Korean Chemical Engineering Research
    • /
    • v.46 no.3
    • /
    • pp.535-539
    • /
    • 2008
  • Conversion to oil, yield of styrene and formation of side products such as ${\alpha}-methyl$ styrene, ethyl benzene, benzene, toluene, dimer and trimer were affected by residue formed during thermal degradation. Also, control of reaction temperature had a difficulty at the first stage. Thus, new reaction system using wetted-wall type reactor was proposed and examined on various parameters such as reaction temperature, feeding rate and removal velocity of formed vapor. Optimun condition was obtained from continuous thermal degradation using wetted-wall type reactor and reaction kinetic study was carried out at new type reactor.

Influence of Cholesterol Derivatives on the Several Physicochemical Properties of Oleic acid (Oleic acid의 여러 물리화학적 성질에 미치는 Cholesterol계 유도체의 영향)

  • Ahn, Beom-Shu
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.3
    • /
    • pp.813-820
    • /
    • 2019
  • The influence of cholesterol on the physicochemical properties of the oleic acid was clarified through the measurements of density, viscosity, IR, $^1H$ NMR, self-diffusion coefficient for the oleic acid samples containing a small amount of additives such as cholesterol, cholestanol, cholestane, cholesteryl oleate, benzene, and ethanol. Cholesterol, possessing one OH group and one double bond in its molecular structure, largely increased the viscosity and reduced the self-diffusion coefficient and the intramolecular movement of oleic acid. Oleic acid forms a complex with cholesterol as well as with ethanol. On the basis of these complex formations and the existence of the clusters composed of oleic acid dimers, it was known the role and the fundamental mechanism of cholesterol to the intermolercular and intramolecular movements of oleic acid in the liquid state.

Synthesis and Photopolymerization of Photoreactive Mesogens Based on Chalcone

  • Nam, Sang-Woon;Kang, Suk-Hoon;Chang, Ji-Young
    • Macromolecular Research
    • /
    • v.15 no.1
    • /
    • pp.74-81
    • /
    • 2007
  • A series of photoreactive mesogens based on chalcone were prepared and their morphological behavior and reactivity were studied according to a variable number of alkyloxy tail carbons. The linear ester compounds 3a-h comprised two chalcone units connected to a benzene ring through ester linkages. All linear ester compounds showed enantiotropic liquid crystalline phases. The X-ray diffractograms for the mesophases of compounds 3a-h showed a set of reflections in the small-angle region which consisted of more than three sharp diffraction peaks with d spacings in the ratio of 1:1/2:1/3, confirming the well defined smectic A structures of the compounds. Compounds 3a-h were considered to be bifunctional monomers due to the presence of two photoreactive chalcone groups. Upon UV irradiation, its polymerization proceeded through the [2+2] addition reaction between chalcone units in a stepwise manner. An image pattern was obtained by the photopolymerization of the liquid crystal of the compound (3h) with decyloxy tails through a photomask. The irradiated part became dark while the masked part remained birefringent under polarized optical microscopy, which was ascribed to the production via the UV irradiation of a polymer or a dimer having cyclobutane rings by [2+2] addition, which thereby disrupted the alignment of the molecules.