• 제목/요약/키워드: Bentonite content

검색결과 156건 처리시간 0.034초

Bacteriophage removal in various clay minerals and clay-amended soils

  • Park, Jeong-Ann;Kang, Jin-Kyu;Kim, Jae-Hyun;Kim, Song-Bae;Yu, Seungho;Kim, Tae-Hun
    • Environmental Engineering Research
    • /
    • 제20권2호
    • /
    • pp.133-140
    • /
    • 2015
  • The aim of this study was to investigate the bacteriophage removal in various clay minerals and clay-amended soils. Batch experiments in kaolinite, montmorillonite, and bentonite showed that kaolinite was far more effective at the MS2 removal than montmorillonite and bentonite. In kaolinite, the log removal increased from 0.046 to 2.18, with an increase in the adsorbent dose from 0.3 to $50g\;L^{-1}$, whereas the log removals in montmorillonite and bentonite increased from 0.007 to 0.40 and from 0.012 to 0.59, respectively. The MS2 removal in kaolinite-amended silt loam soils was examined at three different soil-to-solution (STS) ratios. Results indicated that the log removal of MS2 increased with an increase in the kaolinite content and the STS ratio. At the STS ratio of 1:10, the log removal of MS2 increased from 2.33 to 2.80 with an increase in the kaolinite content from 0% to 10% in kaolinite-amended soils. The log removals of MS2 at the STS ratios of 1:2 and 1:1 increased from 2.84 to 3.47 and from 3.46 to 4.76, respectively, with an increase in the kaolinite content from 0% to 10%. Results also indicated that the log removals of PhiX174 and $Q{\beta}$ in kaolinite-amended soils were similar to each other, but they were far lower than those of MS2 at all the kaolinite contents. The log removal of PhiX174 increased from 0.16 to 0.32, whereas the log removal of $Q{\beta}$ changed from 0.17 to 0.22 with an increase in the kaolinite content from 0% to 10%.

Bentonite에 근입된 앵커의 Creep 특성 (Creep of Plate Anchors Embedded in Bentonite)

  • 신방웅;이준대;신진환;이봉직
    • 한국안전학회지
    • /
    • 제10권4호
    • /
    • pp.3-8
    • /
    • 1995
  • Anchors find their use in providing tie-back resistance for submerged footings, transmission towers, tunnels and ocean structures. Laboratory model teats were performed for the short-term net ultimate uplift capacity of a circular anchors with respect to various embedment depths and moisture content in saturated bentonite. The tests have been conducted with the anchor at two different moisture contents. Based an the model test results, empirical relationships between the net load, rate of strain, and time have been developed. Test results are as follows. 1) In creep tests for load versus ultimate uplift capacity, the displacement of plate anchors rapidly increases during the primary stage but thereafter becomes constant over a period of time. 2) Displacement increased with the increase of the sustain load and embedded ratio in soil. 3) If the load is less than or equal to 75% of the short-term ultimate uplift capacity, a complete pullout does not occur due to creep.

  • PDF

Mechanical and Water Barrier Properties of Soy Protein and Clay Mineral Composite Films

  • Rhim, Jong-Whan;Lee, Jun-Ho;Kwak, Hyo-Sup
    • Food Science and Biotechnology
    • /
    • 제14권1호
    • /
    • pp.112-116
    • /
    • 2005
  • Composite films were prepared with soy protein isolate (SPI) and various clay minerals by casting from polymer and clay water suspension. Effects of clay minerals on film thickness, moisture content (MC), tensile strength (TS), elongation at break (E), water vapor permeability (WVP), and water solubility (WS) were tested. Properties including thickness, surface smoothness, and homogeneity of films prepared with organically modified montmorillonite (O-MMT), Wamok clay (W-clay), bentonite, talc powder, and zeolite were comparable to those of control SPI films. TS increased significantly (p<0.05) in films prepared with O-MMT and bentonite, while WVP decreased significantly (p<0.05) in bentonite-added films. WS of most nanocomposite films decreased significantly (p<0.05).

수분(水分) : 점토비(粘土比)에 따른 주물사(鑄物砂)의 기계적(機械的) 성질(性質)에 관한 연구(硏究) (A Study on the Mechanical Properties of Molding Sand with various Water/Clay Ratio.)

  • 이계완;이추림
    • 한국주조공학회지
    • /
    • 제4권2호
    • /
    • pp.89-95
    • /
    • 1984
  • A Study on the Mechanical Properties of Molding Sand with Various Water/Clay Ratio A standard sample of molding sand was prepared by adding a various amount of bentonite, which has water/clay ratio from 0.4 to 0.6, into artificial sand, Hanyoung #6. The results obtained by measuring the room temperature properties of green mold are as follows. 1. This compressive strength of green molds which have 4% and 10% of bentonite decreased with increasing water/clay ratio, but the maximum strengths of 4.3 (psi) and 7.2 (psi) were observed in the samples with 6%, 8% bentonite respectively when the water/clay is 0.45. 2. The optimum water/clay ratio for strength and permeability increased from 0.4 to 0.5 with increasing clay. 3. The green compressive strength was proportional to the hardness. 4. Deformation increased with increasing water/clay ratio. 5. Flowability decreased with increasing water/clay ratio and clay content in molding sand.

  • PDF

한외여과 알로에 농축액의 Urease 저해 및 무기물 응집 활성 (Urease Inhibition and Flocculating Activity of Concentrated Aloe vera Gel by Using Ultrafiltration Process)

  • 백진홍;김성아;이신영
    • KSBB Journal
    • /
    • 제23권3호
    • /
    • pp.239-244
    • /
    • 2008
  • For physiological function of aloe concentrate by ultrafiltration (UF) process, jack bean urease inhibitory activity and bentonite flocculating activity of UF aloe concentrate was investigated and compared with fresh aloe gel. Urease inhibitory activity of UF aloe concentrate ranged from 87 to 90% in 1 mL sample. Also, urease inhibitory activity of UF aloe concentrate increased about 10% by heat treatment showing the heat stability. From Lineweaver-Burk plot for UF aloe concentrate, urease inhibition pattern indicated general non-competitive inhibition. From flocculation test of UF aloe concentrate about 1% (w/v) bentonite suspension, maximum flocclulating activity of 97% was obtained at 0.5 mL addition of UF aloe concentrate/ 5 ml bentonite suspension. However, flocculating activity of 81% was obtained at 1 mL addition of UF aloe concentrate/ 5 mL bentonite suspension, which was typical flocculating behavior of polymers with re-dispersion at overdose area. FT-IR spectra of UF aloe concentrate showed the characteristic patterns of $\beta$-binding polysaccharide and less deacetylation indicating higher level of bioactive polysaccharide content.

벤토나이트와 영가 철에 의한 침출수 내의 Trichloroethylene, Cr(VI), 질산성질소의 제거 (Removal of Trichloroethylene, Cr(VI) and Nitrate in Leachate by Bentonite and Zero Valent Iron)

  • 이현주;박재우
    • 한국지반환경공학회 논문집
    • /
    • 제5권2호
    • /
    • pp.23-31
    • /
    • 2004
  • 본 연구에서는 침출수 차수재에 Zero Valent Iron (ZVI)를 포함 시켰을 경우, ZVI 함량과 pH에 따른 TCE, 6가 크롬, 질산성질소의 제거능의 변화를 살피고, 반응이 끝난 후 철과 벤토나이트 표면의 철 산화물을 라만 분광기를 통해서 알아보고자 하였다. ZVI의 함량을 중량비로 벤토나이트의 0, 3, 6, 10, 13, 16, 20, 30, 100 w/w% 로 맞춘 9가지의 샘플을 pH7의 완충 용액을 사용했을 경우와 완충 용액을 사용하지 않을 경우 두 가지로 나누어서 실험하였다. Kinetic test 결과, pH7의 완충 용액을 사용하였을 때가 사용하였지 않았을 때보다 TCE의 경우 330시간에서 300시간으로, 6가 크롬의 경우 20시간에서 4시간으로, 질산성질소는 140시간에서 5시간으로 제거 속도가 빨라졌다. 모든 오염물질의 경우 ZVI 함량이 증가할수록 제거 효율이 높아졌으며, pH 7의 완충 용액을 사용하였을 경우 제거 효율도 더 높아지는 것을 볼 수 있었다. 반응 후 철과 벤토나이트의 표면을 라만 분광기를 이용하여 분석한 결과 여러 가지 철산화물이 확인되었다. 이러한 철산화물은 좋은 흡착제의 역할을 할 수 있으며, 이 중 magnetite는 장기간 동안 오염물질의 제거 성능을 유지시켜 줄 수 있다.

  • PDF

열무 생육을 통한 유황벤토나이트 혼합 비료의 효과 (Effects of Sulphur Bentonite Mixture Fertilizer for the Growth of Young Radish (Raphanus sativus L.))

  • 남기웅;윤덕훈
    • 한국자원식물학회지
    • /
    • 제27권4호
    • /
    • pp.354-358
    • /
    • 2014
  • 유황과 벤토나이트의 특성을 고려하여 적정 비율로 혼합한 유황벤토나이트 혼합비료를 기비로 $1000m^2$당 3 kg과 6 kg, 그리고 무처리로 구분하여 시비하고 열무를 재배하여 토양의 화학성 변화와 작물생육의 효과를 시험하였다. 그 결과 토양의 pH는 시비량이 증가할수록 약간씩 낮아지는 경향을 보였으나 큰 하락을 나타내지 않았다. 토양내 전질소 함량은 $6kg/1000m^2$ 처리구에서 700 mg/kg으로 가장 높았으며, 유기물 함량은 $3kg/1000m^2$ 처리구에서 1.29%로 가장 높았다. 토양중 유효인산의 함량은 시비량의 증가에 따라 높아져 $6kg/1000m^2$ 처리구에서 289 mg/kg으로 조사되었다. 열무의 지상부는 $3kg/1000m^2$ 처리구, 지하부는 $6kg/1000m^2$ 처리구에서 더 크게 생장하였다. 따라서, 유황벤토나이트 혼합비료의 시비시 토양 화학성 및 작물생육 증진에 효과가 있는 것으로 판단된다.

Research on sealing ability of granular bentonite material after 10.5 years of engineered barrier experiment

  • Ni, Hongyang;Liu, Jiangfeng;Pu, Hai;Zhang, Guimin;Chen, Xu;Skoczylas, Frederic
    • Geomechanics and Engineering
    • /
    • 제27권6호
    • /
    • pp.583-594
    • /
    • 2021
  • The gas permeability behavior of unsaturated bentonite-based materials is of major importance for ensuring effective sealing of high-level radwaste repositories. This study investigated this by taking a sample of Granular Bentonite Material (GBM) at the end of the Engineered Barrier Emplacement (EB) experiment in the Opalinus Clay, placing it under different humidity conditions until it achieved equilibration, and testing the change in the gas permeability under loading and unloading. Environmental humidity is shown to have a significant effect on the water content, saturation, porosity and dry density of GBM and to affect its gas permeability. Higher sensitivity to confining pressure is exhibited by samples equilibrated at higher relative humidity (RH). It should be noted that for the sample at RH=98%, when the confining pressure is raised from 1 MPa to 6 MPa, gas permeability can be reduced from 10-16 m2 to 10-19 m2, which is close to the requirements of gas tightness. Due to higher water content and easier compressibility, samples equilibrated under higher RH show greater irreversibility during the loading and unloading process. The effective gas permeability of highly saturated samples can be increased by 2-3 orders of magnitude after 105℃ drying. In addition, cracks possibly occurred during the dehydration and drying process will become the main channel for gas migration, which will greatly affect the sealing performance of GBM.

AN ANALYSIS OF THE FACTORS AFFECTING THE HYDRAULIC CONDUCTIVITY AND SWELLING PRESSURE OF KYUNGJU CA-BENTONITE FOR USE AS A CLAY-BASED SEALING MATERIAL FOR A HIGH-LEVEL WASTE REPOSITORY

  • Cho, Won-Jin;Lee, Jae-Owan;Kwon, Sang-Ki
    • Nuclear Engineering and Technology
    • /
    • 제44권1호
    • /
    • pp.89-102
    • /
    • 2012
  • The buffer and backfill are important components of the engineered barrier system in a high-level waste repository, which should be constructed in a hard rock formation at a depth of several hundred meters below the ground surface. The primary function of the buffer and backfill is to seal the underground excavation as a preferred flow path for radionuclide migration from the deposited high-level waste. This study investigates the hydraulic conductivity and swelling pressure of Kyungju Ca-bentonite, which is the candidate material for the buffer and backfill in the Korean reference high-level waste disposal system. The factors that influence the hydraulic conductivity and swelling pressure of the buffer and backfill are analyzed. The factors considered are the dry density, the temperature, the sand content, the salinity and the organic carbon content. The possibility of deterioration in the sealing performance of the buffer and backfill is also assessed.

Shear strength behavior of crude oil contaminated sand-concrete interface

  • Mohammadi, Amirhossein;Ebadi, Taghi;Eslami, Abolfazl
    • Geomechanics and Engineering
    • /
    • 제12권2호
    • /
    • pp.211-221
    • /
    • 2017
  • A laboratory investigation into crude oil contaminated sand-concrete interface behavior is performed. The interface tests were carried out through a direct shear apparatus. Pure sand and sand-bentonite mixture with different crude oil contents and three concrete surfaces of different textures (smooth, semi-rough, and rough) were examined. The experimental results showed that the concrete surface texture is an effective factor in soil-concrete interface shear strength. The interface shear strength of the rough concrete surface was found higher than smooth and semi-rough concrete surfaces. In addition to the texture, the normal stress and the crude oil content also play important roles in interface shear strength. Moreover, the friction angle decreases with increasing crude oil content due to increase of oil concentration in soil and it increases with increasing interface roughness.