Browse > Article
http://dx.doi.org/10.12989/gae.2021.27.6.583

Research on sealing ability of granular bentonite material after 10.5 years of engineered barrier experiment  

Ni, Hongyang (State Key Laboratory for GeoMechanics and Deep Underground Engineering, and School of Mechanics and Civil Engineering, China University of Mining & Technology)
Liu, Jiangfeng (State Key Laboratory for GeoMechanics and Deep Underground Engineering, and School of Mechanics and Civil Engineering, China University of Mining & Technology)
Pu, Hai (State Key Laboratory for GeoMechanics and Deep Underground Engineering, and School of Mechanics and Civil Engineering, China University of Mining & Technology)
Zhang, Guimin (State Key Laboratory for GeoMechanics and Deep Underground Engineering, and School of Mechanics and Civil Engineering, China University of Mining & Technology)
Chen, Xu (State Key Laboratory for GeoMechanics and Deep Underground Engineering, and School of Mechanics and Civil Engineering, China University of Mining & Technology)
Skoczylas, Frederic (Laboratoire de Mechanique de Lille (LML), and Ecole Centrale de Lille)
Publication Information
Geomechanics and Engineering / v.27, no.6, 2021 , pp. 583-594 More about this Journal
Abstract
The gas permeability behavior of unsaturated bentonite-based materials is of major importance for ensuring effective sealing of high-level radwaste repositories. This study investigated this by taking a sample of Granular Bentonite Material (GBM) at the end of the Engineered Barrier Emplacement (EB) experiment in the Opalinus Clay, placing it under different humidity conditions until it achieved equilibration, and testing the change in the gas permeability under loading and unloading. Environmental humidity is shown to have a significant effect on the water content, saturation, porosity and dry density of GBM and to affect its gas permeability. Higher sensitivity to confining pressure is exhibited by samples equilibrated at higher relative humidity (RH). It should be noted that for the sample at RH=98%, when the confining pressure is raised from 1 MPa to 6 MPa, gas permeability can be reduced from 10-16 m2 to 10-19 m2, which is close to the requirements of gas tightness. Due to higher water content and easier compressibility, samples equilibrated under higher RH show greater irreversibility during the loading and unloading process. The effective gas permeability of highly saturated samples can be increased by 2-3 orders of magnitude after 105℃ drying. In addition, cracks possibly occurred during the dehydration and drying process will become the main channel for gas migration, which will greatly affect the sealing performance of GBM.
Keywords
effective gas permeability; granular bentonite material; irreversible change; microstructure;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Gutierrez-Rodrigo, V., Villar, M.V., Martin, P.L. and Romero, F.J. (2014), "Gas transport properties of compacted bentonite", Unsaturated Soils: Research & Applications, 1-2, 1735-1740. https://doi.org/10.1201/b17034-253.   DOI
2 Gebrenegus, T., Ghezzehei, T.A. and Tuller, M. (2011), "Physicochemical controls on initiation and evolution of desiccation cracks in sand-bentonite mixtures: X-ray CT imaging and stochastic modeling", J. Contaminant Hydrology, 126(1-2), 100-112. https://doi.org/10.1016/j.jconhyd.2011.07.004.   DOI
3 Harrington, J.F., Graham, C.C., Cuss, R.J. and Norris, S. (2017), "Gas network development in a precompacted bentonite experiment: Evidence of generation and evolution", Appl. Clay Sci., 147, 80-89. https://doi.org/10.1016/j.clay.2017.07.005.   DOI
4 Dueck, A. (2008), "Laboratory results from hydro-mechanical tests on a water unsaturated bentonite", Eng. Geology, 97(1-2), 15-24. https://doi.org/10.1016/j.enggeo.2007.11.001.   DOI
5 Villar, M. (2012), "EB experiment. Laboratory infiltration tests report", PEBS Deliverable 2.1-5. Technical Report CIEMAT/2G210/07/12. Madrid.
6 Wei, T., Hu, D., Zhou, H., Lu, J. and Lu, T. (2019), "Influences of degree of saturation and stress cycle on gas permeability of unsaturated compacted Gaomiaozi bentonite", Eng. Geology, 254, 54-62. https://doi.org/10.1016/j.enggeo.2019.04.005.   DOI
7 Xu, L., Ye, W. M. and Ye, B. (2017), "Gas breakthrough in saturated compacted GaoMiaoZi (GMZ) bentonite under rigid boundary conditions", Can. Geotech. J., 54(8), 1139-1149. https://doi.org/10.1139/cgj-2016-0220.   DOI
8 Zhang, C.L. and Krohn, K.P. (2019), "Sealing behaviour of crushed claystone-bentonite mixtures", Geomech. Energ. Environ., 17, 90-105. https://doi.org/10.1016/j.gete.2018.09.004.   DOI
9 Rayhani, M.H., Yanful, E.K. and Fakher, A. (2007), "Desiccation-induced cracking and its effect on the hydraulic conductivity of clayey soils from Iran", Can. Geotech. J., 44(3), 276-283. https://doi.org/10.1139/t06-125.   DOI
10 Angin, Z. and Ikizler, S. B. (2018), "Assessment of swelling pressure of stabilized bentonite", Geomech. Eng., 15(6), 1219-1225. https://doi.org/10.12989/gae.2018.15.6.1219.   DOI
11 Billiotte, J., Yang, D. and Su, K. (2008), "Experimental study on gas permeability of mudstones", Phys. Chem. Earth, Parts A/B/C, 33, 231-236. https://doi.org/10.1016/j.pce.2008.10.040.   DOI
12 Cui, Y.J., Nguyen, X.P., Tang, A.M. and Li, X.L. (2013), "An insight into the unloading/reloading loops on the compression curve of natural stiff clays", Appl. Clay Sci., 83-84, 343-348. https://doi.org/10.1016/j.clay.2013.08.003.   DOI
13 Dana, E. and Skoczylas, F. (1999), "Gas relative permeability and pore structure of sandstones", Int. J. Rock Mech. Mining Sci., 36(5), 613-625. https://doi.org/10.1016/s0148-9062(99)00037-6.   DOI
14 Graham, C.C., Harrington, J.F., Cuss, R.J. and Sellin, P. (2012), "Gas migration experiments in bentonite: implications for numerical modelling", Mineral. Mag., 76(8), 3279-3292. https://doi.org/10.1180/minmag.2012.076.8.41.   DOI
15 Liu, J.F., Skoczylas, F. and Talandier, J. (2015), "Gas permeability of a compacted bentonite-sand mixture: coupled effects of water content, dry density, and confining pressure", Can. Geotech. J., 52(8), 1159-1167. https://doi.org/10.1139/cgj2014-0371.   DOI
16 Lin, B. and Cerato, A.B. (2014), "Applications of SEM and ESEM in Microstructural Investigation of Shale-Weathered Expansive Soils along Swelling-Shrinkage Cycles", Eng. Geology, 177, 66-74. https://doi.org/10.1016/j.enggeo.2014.05.006.   DOI
17 Liu, J.F., Skoczylas, F., Talandier, J. and Pu, H. (2016), "Dismantling of the EB experiment: Experimental research on the retrieved GBM and bentonite blocks", Nuclear Eng. Design, 300, 297-307. https://doi.org/10.1016/j.nucengdes.2016.01.023.   DOI
18 Liu, J.F., Song, S.B., Liu, J., Huang, B.X., Cao, X.L., Zhang, K. and Skoczylas, F. (2017), "A numerical investigation on the effect of gas pressure on the water saturation of compacted bentonite-sand samples", Geofluids, 2017, 1-12. https://doi.org/10.1155/2017/9010572.   DOI
19 Montes-H, G. (2005), "Swelling-shrinkage measurements of bentonite using coupled environmental scanning electron microscopy and digital image analysis", J. Colloid Interface Sci., 284(1), 271-277. https://doi.org/10.1016/j.jcis.2004.09.025.   DOI
20 Montes-H, G., Duplay, J., Martinez, L. and Mendoza, C. (2003b), "Swelling-shrinkage kinetics of MX80 bentonite", Appl. Clay Sci., 22(6), 279-293. https://doi.org/10.1016/S0169-1317(03)00120-0.   DOI
21 Montes-H, G., Geraud, Y., Duplay, J. and Reuschle, T. (2005), "ESEM observations of compacted bentonite submitted to hydration/dehydration conditions", Colloids Surfaces A: Physicochem. Eng. Aspects, 262(1-3), 14-22. https://doi.org/10.1016/j.colsurfa.2005.03.021.   DOI
22 Czaikowski, O., Miehe, R. and Rothfuchs, T. (2014), "Self-sealing barriers of sand/clay mixtures - lessons learnt fromin situexperiment and retrospective modelling", Geological Society, London, Special Publications, 400(1), 381-397. https://doi.org/10.1144/sp400.16.   DOI
23 Mayor, J.C., Garcia-Sineriz, J., Alonso, E., Alheid, H. and Blumbling, P. (2005), "Engineered barrier emplacement experiment in Opalinus Clay for the disposal of radioactive waste in underground repositories", Empresa Nacional de Residuos.
24 Galle, C. (2000), "Gas breakthrough pressure in compacted Fo-Ca clay and interfacial gas overpressure in waste disposal context", Appl. Clay Sci., 17(1-2), 85-97. https://doi.org/10.1016/s0169-1317(00)00007-7.   DOI
25 Gatabin, C. (2005), "Selection and THM characterization of the buffer material", Technical Report RT DPC/SCCME 05-704-B.ANDRA.
26 Liu, J., Wu, Y., Cai, C.-Z., Ni, H., Cao, X., Pu, H. and Skoczylas, F. (2018), "Investigation into water retention and gas permeability of Opalinus clay", Environ. Earth Sci., 77(5), 1-13. https://doi.org/10.1007/s12665-018-7397-3.   DOI
27 Montes-H, G., Duplay, J., Martinez, L., Geraud, Y. and Rousset-Tournier, B. (2003a), "Influence of interlayer cations on the water sorption and swelling-shrinkage of MX80 bentonite", Appl. Clay Sci., 23(5-6), 309-321. https://doi.org/10.1016/s0169-1317(03)00130-3.   DOI
28 Nagurney, A.B., Caddick, M.J., Law, R.D., Ross, N.L. and Kruckenberg, S.C. (2021), "Crystallographically controlled void space at grain boundaries in the Harkless quartzite", J. Struct. Geology, 143, 104235. https://doi.org/10.1016/j.jsg.2020.104235.   DOI
29 Olivella, S. and Alonso, E.E. (2008), "Gas flow through clay barriers", Geotechnique, 58(3), 157-176. https://doi.org/10.1680/geot.2008.58.3.157.   DOI
30 Pusch, R. (1979), "Highly compacted sodium bentonite for isolating rock-deposited radioactive waste products", Nuclear Technol., 45(2), 153-157. https://doi.org/10.13182/nt79-a32305.   DOI
31 Niu, W., Ye, W. and Song, X. (2019), "Unsaturated permeability of Gaomiaozi bentonite under partially free-swelling conditions", Acta Geotechnica, 1-30. https://doi.org/10.1007/s11440-019-00788-9.   DOI
32 Carbonell, B., Villar, M.V., Martin, P.L. and Gutierrez-A lvarez, C. (2018), "Gas transport in compacted bentonite after 18 years under barrier conditions", Geomech. Energ. Environ., 17, 66-74. https://doi.org/10.1016/j.gete.2018.03.001.   DOI
33 Cuss, R.J., Harrington, J.F., Noy, D.J., Wikman, A. and Sellin, P. (2011), "Large scale gas injection test (Lasgit): Results from two gas injection tests", Phys. Chem. Earth, Parts A/B/C, 36(17-18), 1729-1742. https://doi.org/10.1016/j.pce.2011.07.022.   DOI
34 Davy, C.A., Skoczylas, F., Lebon, P. and Dubois, T., (2008), "Gas migration properties through a bentonite/argillite interface", Appl. Clay Sci., 42(3), 639-648. https://doi.org/10.1016/j.clay.2008.05.005.   DOI
35 Sun, W., Zong, F., Sun, D., Wei, Z., Schanz, T. and Fatahi, B. (2017), "Swelling prediction of bentonite-sand mixtures in the full range of sand content", Eng. Geology, 222, 146-155. https://doi.org/10.1016/j.enggeo.2017.04.004.   DOI
36 Tang, C.S., Li, S.J., Wang, D.W., Chen, Z.G., Shi, B. and Inyang, H. (2019), "Experimental simulation of boundary condition effects on bentonite swelling in HLW repositories", Environ. Earth Sci., 78(5), 135. https://doi.org/10.1007/s12665-019-8132-4.   DOI
37 Tang, C., Shi, B., Liu, C., Zhao, L. and Wang, B. (2008), "Influencing factors of geometrical structure of surface shrinkage cracks in clayey soils", Eng. Geology, 101(3-4), 204-217. https://doi.org/10.1016/j.enggeo.2008.05.005.   DOI
38 Ortiz, L., Volckaert, G. and Mallants, D. (2002), "Gas generation and migration in Boom Clay, a potential host rock formation for nuclear waste storage", Eng. Geology, 64(2-3), 287-296. https://doi.org/10.1016/s0013-7952(01)00107-7.   DOI
39 Saba, S., Barnichon, J.D., Cui, Y.J., Tang, A.M. and Delage, P. (2014), "Microstructure and anisotropic swelling behaviour of compacted bentonite/sand mixture", J. Rock Mech. Geotech. Eng., 6(2), 126-132. https://doi.org/10.1016/j.jrmge.2014.01.006.   DOI
40 Seiphoori, A., Ferrari, A. and Laloui, L. (2014), "Water retention behaviour and microstructural evolution of MX-80 bentonite during wetting and drying cycles", Geotechnique, 64(9), 721-734. https://doi.org/10.1680/geot.14.p.017.   DOI
41 Song, L., Li, J., Garg, A. and Mei, G. (2018), "Experimental study on water exchange between crack and clay matrix", Geomech. Eng., 14(3), 283-291. https://doi.org/10.12989/gae.2018.14.3.283.   DOI
42 Sun, H. (2018), "A new method to predict swelling pressure of compacted bentonites based on diffuse double layer theory", Geomech. Eng., 16(1), 71-83. https://doi.org/10.12989/gae.2018.16.1.071.   DOI
43 Sun, H., Masin, D., Najser, J., Nedela, V. and Navratilova, E. (2018), "Bentonite microstructure and saturation evolution in wetting-drying cycles evaluated using ESEM, MIP and WRC measurements", Geotechnique, 1-53. https://doi.org/10.1680/jgeot.17.p.253.   DOI
44 Garcia-Sineriz, J., Rey, M. and Mayor, J., (2008), "The engineered barrier experiment at Mont Terri rock laboratory", Sci. Technol. Series n, 334, 65-75, lille, September.
45 Garcia-Sineriz, J.L., Villar, M.V., Rey, M. and Palacios, B. (2015), "Engineered barrier of bentonite pellets and compacted blocks: State after reaching saturation", Eng. Geology, 192, 33-45. https://doi.org/10.1016/j.enggeo.2015.04.002.   DOI