• Title/Summary/Keyword: Bentonite

Search Result 784, Processing Time 0.03 seconds

A new method to predict swelling pressure of compacted bentonites based on diffuse double layer theory

  • Sun, Haiquan
    • Geomechanics and Engineering
    • /
    • v.16 no.1
    • /
    • pp.71-83
    • /
    • 2018
  • Compacted bentonites were chosen as the backfill material and buffer in high level nuclear waste disposal due to its high swelling pressure, high ion adsorption capacity and low permeability. It is essential to estimate the swelling pressure in design and considering the safety of the nuclear repositories. The swelling pressure model of expansive clay colloids was developed based on Gouy-Chapman diffuse double layer theory. However, the diffuse double layer model is effective in predicting low compaction dry density (low swelling pressure) for certain bentonites, and invalidation in simulating high compaction dry density (high swelling pressure). In this paper, the new relationship between nondimensional midplane potential function, u, and nondimensional distance function, Kd, were established based on the Gouy-Chapman theory by considering the variation of void ratio. The new developed model was constructed based on the published literature data of compacted Na-bentonite (MX80) and Ca-bentonite (FoCa) for sodium and calcium bentonite respectively. The proposed models were applied to re-compute swelling pressure of other compacted Na-bentonites (Kunigel-V1, Voclay, Neokunibond and GMZ) and Ca-bentonites (FEBEX, Bavaria bentonite, Bentonite S-2, Montigel bentonite) based on the reported experimental data. Results show that the predicted swelling pressure has a good agreement with the experimental swelling pressure in all cases.

The Compatibility of Slurry Wall Materials with Leachate for Cut -off of Contaminated Sites (오염지역 차폐용 슬러리월 재료와 침출수의 반응 특성)

  • 이용수;정하익
    • Geotechnical Engineering
    • /
    • v.13 no.2
    • /
    • pp.9-16
    • /
    • 1997
  • Cut-off methods of controlling leachate migration from waste landfills and contaminated sites are studied. Permeability and chemical compatibility tests are prrforlned on slurry wall materials including soil-bentonite, cement-bentonite, cement / fly ash-bentonite, plastic concrete. Hydraulic conductivity of soil-bentonite mixture is the lowest of these four bacuill materials. The leachate from municipal solid waste has little influence on the permeability of the backfill materials. The bentonite slurry becomes flocculated and aggregated when exposed to the leachate. The results of the permeability test showed that the hydraulic conductivities of the backfill materials are in the order soil-beiltonite, Plastic concrete, cement-bentonite. And the result c: the compatibility test showed increase in permeability due to the effects of leachate. Thus, in designing the slurry wall it is essential to check the behaviour of the bentonite slurry and backfill materials on the compatibility with the contaminants.

  • PDF

Conceptual Modeling Coupled Thermal-Hydrological-Chemical Processes in Bentonite Buffer for High-Level Nuclear Waste Repository (고준위 방사성폐기물 처분장에서 벤토나이트 완충제에 대한 열-수리-화학 작용 개념 모델링)

  • Choi, Byoung-Young;Ryu, Ji-Hun;Park, Jinyoung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.14 no.1
    • /
    • pp.1-9
    • /
    • 2016
  • In this study, thermal-hydrological-chemical modeling for the alteration of a bentonite buffer is carried out using a simulation code TOUGHREACT. The modeling results show that the water saturation of bentonite steadily increases and finally the bentonite is fully saturated after 10 years. In addition, the temperature rapidly increases and stabilizes after 0.5 year, exhibiting a constant thermal gradient as a function of distance from the copper tube. The change of thermal-hydrological conditions mainly results in the alteration of anhydrite and calcite. Anhydrite and calcite are dissolved along with the inflow of groundwater. They then tend to precipitate in the vicinity of the copper tube due to its high temperature. This behavior induces a slight decrease in porosity and permeability of bentonite near the copper tube. Furthermore, this study finds that the diffusion coefficient can significantly affect the alteration of anhydrite and calcite, which causes changes in the hydrological properties of bentonite such as porosity and permeability. This study may facilitate the safety assessment of high-level radioactive waste repositories.

Strength Characteristics of Soil-Bentonite Mixture (Soil-Bentonite 혼합토의 강도 특성)

  • Jin, Guang-Ri;Shin, Dong-Hoon;Im, Eun-Sang;Kim, Ki-Young
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.844-851
    • /
    • 2009
  • A soil mixture with low permeability and bentonite as an additive has been highly utilized as a cutoff material in landfills, banks, and dams. Even though it is anticipated that the water can seep through shear failures in the filter layer due to external loads and embankment loads during construction, usually only the coefficient of permeability of the soil mixture is considered rather than the changes of strength from the different amounts of additives. Therefore, the amount of bentonite was changed between 0%~4% in the soil mixture of the bed material to conduct a series of unconfined compressive strength, tensile strength, and shear strength tests on a specimen in order to study the characteristics of the strength. In the result, the unconfined compressive and tensile strength were increased along with the increased amount of bentonite in the low water content; however, the tensile strength in the consolidated-drained shear test generally showed similar values without significant changes.

  • PDF

Study on physical characteristics of Graphite-added bentonite grout for backfilling closed-loop groud heat exchanger (수직 밀폐형 지중 열교환기용 뒤채움재로서 흑연(Graphite)을 첨가한 벤토나이트 그라우트재의 물리적 특성연구)

  • Lee, Kang-Ja;Gil, Hu-Jeong;Lee, Chul-Ho;Choi, Hang-Seok;Choi, Hyo-Pum
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.179-187
    • /
    • 2009
  • Bentonite-based grouting has been popularly used to seal a borehole installed for a closed-loop vertical ground heat exchanger in a geothermal heat pump system (GHP) because of its high swelling potential and low hydraulic conductivity. The bentonite-based grout, however, has relatively lower thermal conductivity than that of ground formation. Accordingly, it is common to add some additives such as silica sand to the bentonite-based grout for enhancing thermal performance. In this study, graphite is adapted to substitute silica sand as an addictive because graphite has very high thermal conductivity. The effect of graphite on the thermal conductivity of bentonite-based grouts has been quantitatively evaluated for seven bentonite grouts from different product sources. In addition, comparisons of viscosity between applications of graphite and silica sand as additives has been carried out. In conclusion, using graphite has thermal conductivity about three times higher than that of silica sand.

  • PDF

Hydraulic behaviour of dune sand-bentonite mixtures under confining stress

  • Gueddouda, M.K.;Lamara, M.;Abou-bekr, N.;Taibi, S.
    • Geomechanics and Engineering
    • /
    • v.2 no.3
    • /
    • pp.213-227
    • /
    • 2010
  • Compacted layers of sand-bentonite mixtures have been proposed and used in a variety of geotechnical projects as engineered barriers for the enhancement of impervious landfill liners, cores of zoned earth dams and radioactive waste repository systems. This paper presents a study on the valorization of local materiel such as dune sand from Laghouat region and mine bentonite intended for the realization of liner base layers in the conception of insulation barriers for hazardous waste centers. In the practice we try to get an economical mixture that satisfies the hydraulic and mechanical properties specified by regulation rules. The effect of the bentonite additions on the mixture is reflected by its capability of clogging the matrix pores upon swelling. In order to get an adequate dune sand-bentonite mixture, an investigation on hydraulic and mechanical behaviours is carried out in this study for different mixtures. Using oedometer test, the adequate bentonite addition to the mixture, which satisfies the conditions on permeability, is found to be around 12% to 15%. These results are also confirmed by direct measurement using triaxial cell.

A Study on the Nonlinear Structural Analysis for Spent Nuclear Fuel Disposal Container and Bentonite Buffer (고준위폐기물 처분장치와 이를 감싸고 있는 벤토나이트 버퍼에 대한 비선형 구조해석)

  • 권영주;최석호
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.04a
    • /
    • pp.19-26
    • /
    • 2002
  • In this paper, the nonlinear structural analysis for the composite structure of the spent nuclear fuel disposal container and the 50cm thick bentonite buffer is carried out to predict the collapse of the container while the sudden rock movement of 10cm is applied on the composite structure. This sudden rock movement is anticipated by the earthquake etc. at a deep underground. Horizontal symmetric rock movement is assumed in this structural analysis. Elastoplastic material model is adopted. Drucker-Prager yield criterion is used for the material yield prediction of the bentonite buffer and von-Mises yield criterion is used for the material yield prediction of the container(cast iron insert, copper outer shell and lid and bottom). Analysis results show that even though very large deformations occur beyond the yield point in the bentonite buffer, the container structure still endures elastic small strains and stresses below the yield strength. Hence, the 50cm thick bentonite buffer can protect the container safely against the 10cm sudden rock movement by earthquake etc.. Analysis results also show that bending deformations occur in the container structure due to the shear deformation of the bentonite buffer. The elastoplastic nonlinear structural analysis for the composite structure of the container and the bentonite buffer is performed using the finite element analysis code, NISA.

  • PDF

An Elastoplastic Analysis for Spent Nuclear Fuel Disposal Container and Its Bentonite Buffer: Asymmetric Rock Movement (고준위폐기물 처분장치 및 완충장치에 대한 탄소성해석 : 비대칭 암반력)

  • 권영주;최석호
    • Transactions of Materials Processing
    • /
    • v.12 no.5
    • /
    • pp.479-486
    • /
    • 2003
  • This paper presents an elastoplastic analysis for spent nuclear fuel disposal container and its 50 cm thick bentonite buffer to predict the collapse of the container while the horizontal asymmetric sudden rock movement of 10 cm is applied on the composite structure. This sudden rock movement is anticipated by the earthquake etc. at a deep underground. Elastoplastic material model is adopted. Drucker-Prager yield criterion is used for the material yield prediction of the bentonite buffer and von-Mises yield criterion is used for the material yield prediction of the container. Analysis results show that even though very large deformations occur beyond the yield point in the bentonite buffer, the container structure still endures elastic small strains and stresses below the yield strength. Hence, the asymmetric 50 cm thick bentonite buffer can protect the container safely against the 10 cm sudden rock movement by earthquake etc.. Analysis results also show that bending deformations occur in the container structure due to the shear deformation of the bentonite buffer. The finite element analysis code, NISA, is used for the analysis.

Preparation and Characterization of Poly(vinyl alcohol)/bentonite Nanocomposites Films with Modified Bentonites (개질된 벤토나이트가 혼입된 폴리비닐알코올/벤토나이트 나노복합 필름의 제조 및 특성분석)

  • Ji, Byung Chul;Yang, Seong Baek;Lee, Jungeon;Park, Jae Min;Han, Myung-Dong;Kim, Ui Ju;Yeum, Jeong Hyun
    • Textile Coloration and Finishing
    • /
    • v.33 no.3
    • /
    • pp.161-167
    • /
    • 2021
  • Polymer nanocomposite is considered a great alternative to solve the limitations that exist in a simple combination material, as well as to produce multifunctional and high-performance results. In this research, PVA/bentonite nanocomposite films were prepared based on the presence or absence of modification of nano-clay(bentonite) a SUPERGEL® product, modification conditions and content, and the structural variation of the prepared PVA/bentonite nanocomposite films were examined. The effect of variations in the internal structure of the nanocomposite on mechanical and thermal properties was investigated. As a result of evaluating the thermal characteristics of the PVA/bentonite nanocomposite film based on the concentration of the modified bentonite, it was verified that the thermal characteristics and stability were improved because of interaction between the polymer and the modified nano-clay.

Surface Modification of Bentonite for the Improvement of Radionuclide Sorption

  • Hong, Seokju;Kim, Jueun;Um, Wooyong
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.20 no.1
    • /
    • pp.1-12
    • /
    • 2022
  • Bentonite is the most probable candidate to be used as a buffer in a deep geological repository with high swelling properties, hydraulic conductivity, thermal conductivity, and radionuclide sorption ability. Among them, the radionuclide sorption ability prevents or delays the transport of radionuclides into the nearby environment when an accident occurs and the radionuclide leaks from the canister, so it needs to be strengthened in terms of long-term disposal safety. Here, we proposed a surface modification method in which some inorganic additives were added to form NaP zeolite on the surface of the bentonite yielded at Yeonil, South Korea. We confirmed that the NaP zeolite was well-formed on the bentonite surface, which also increased the sorption efficiency of Cs and Sr from groundwater conditions. Both NaP and NaX zeolite can be produced and we have demonstrated that the generation mechanism of NaX and NaP is due to the number of homogeneous/heterogeneous nucleation sites and the number of nutrients supplied from an aluminosilicate gel during the surface modification process. This study showed the potential of surface modification on bentonite to enhance the safety of deep geological radioactive waste repository by improving the radionuclide sorption ability of bentonite.