A Study on the Nonlinear Structural Analysis for Spent Nuclear Fuel Disposal Container and Bentonite Buffer

고준위폐기물 처분장치와 이를 감싸고 있는 벤토나이트 버퍼에 대한 비선형 구조해석

  • 권영주 (홍익대학교 기계정보공학과) ;
  • 최석호 (홍익대학교 대학원 기계설계학과)
  • Published : 2002.04.01

Abstract

In this paper, the nonlinear structural analysis for the composite structure of the spent nuclear fuel disposal container and the 50cm thick bentonite buffer is carried out to predict the collapse of the container while the sudden rock movement of 10cm is applied on the composite structure. This sudden rock movement is anticipated by the earthquake etc. at a deep underground. Horizontal symmetric rock movement is assumed in this structural analysis. Elastoplastic material model is adopted. Drucker-Prager yield criterion is used for the material yield prediction of the bentonite buffer and von-Mises yield criterion is used for the material yield prediction of the container(cast iron insert, copper outer shell and lid and bottom). Analysis results show that even though very large deformations occur beyond the yield point in the bentonite buffer, the container structure still endures elastic small strains and stresses below the yield strength. Hence, the 50cm thick bentonite buffer can protect the container safely against the 10cm sudden rock movement by earthquake etc.. Analysis results also show that bending deformations occur in the container structure due to the shear deformation of the bentonite buffer. The elastoplastic nonlinear structural analysis for the composite structure of the container and the bentonite buffer is performed using the finite element analysis code, NISA.

Keywords