• Title/Summary/Keyword: Bending stress

Search Result 1,814, Processing Time 0.042 seconds

Effect of Bend Angle on the Behavior of pipe Bend under Internal Pressure and In-Plane Bending toads (내압과 내면 굽힘하중 조건에서 곡관의 거동에 미치는 굽힘각의 영향)

  • Kim Jin-Weon;Na Man-Gyun
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.2 s.70
    • /
    • pp.18-25
    • /
    • 2005
  • This study performed finite element analysis on the pipe bend with various bend angles under loading conditions of internal pressure and combined pressure and bending, to investigate the effect of bend angle on the collapse behavior of pipe bend and on the stress state in the bend region. In the analysis, the pipe bends with bend angle of $5\~90^{\circ}$ were considered, and the bending moment was applied as in-plane closing and opening modes. From the results of analysis, it was found that the collapse moment of pipe bend increases with decreasing bend angle. As the bend angle decreases, also, the equivalent stress at intrados region increases regardless of bending mode. Under closing mode bending especially, the increase in stress at intrados is significant so that the maximum stress region moves from crown to intrados with decreasing bend angle.

Analytical studies on stress concentration due to a rectangular small hole in thin plate under bending loads

  • Yang, Y.;Liu, J.K.;Cai, C.W.
    • Structural Engineering and Mechanics
    • /
    • v.36 no.6
    • /
    • pp.669-678
    • /
    • 2010
  • In general means, the stress concentration problem of elastic plate with a rectangular hole can be investigated by numerical methods, and only approximative results are derived. This paper deduces an analytical study of the stress concentration due to a rectangular hole in an elastic plate under bending loads. Base on classical elasticity theory and FEM applying the U-transformation technique, the uncoupled governing equations with 3-DOF are established, and the analytical displacement solutions of the finite element equations are derived in series form or double integral form. Therefore, the stress concentration factor can then be discussed easily and conveniently. For the plate subjected to unidirectional bending loads, the non-conforming plate bending element with four nodes and 12-DOF is taken as examples to demonstrate the application of the proposed method. The inner force distribution is obtained. The solutions are adequate for the condition when the hole is far away from the edges and the thin plate subjected to any transverse loadings.

FATIGUE STRENGTH OF FILLET WELDED STEEL STRUCTURE UNDER OUT-OF-PLANE BENDING LOAD

  • Kang, Sung-Won;Kim, Wha-Soo;Paik, Young-Min
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.113-120
    • /
    • 2002
  • The effect of out-of-plane loads on the fatigue strength of welded steel structures is examined through fatigue tests with weldment of two fillet weld joint types. The results of the fatigue tests are compared with those under axial loads, on the basis of the hot spot stress range at the weld toe. From the result of the comparison, a method on how to incorporate the effect of the out-of-plane bending stress is proposed using design S-N curves derived from fatigue tests under the axial load. The proposed method is useful for rational assessment of the fatigue strength of fillet-welded structures, where combined stresses of the in-plane axial stress and the out-of-plane bending stress are induced simultaneously due to the complexity of applied loads and structural geometry.

  • PDF

Effect of Thermal Cycle on Strength of Ceramic and Metal Joint (세라믹/금속접합재의 강도에 미치는 열사이클 영향)

  • 박영철;오세욱;김광영
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.7
    • /
    • pp.1664-1673
    • /
    • 1994
  • As a fundamental study on effects of thermal-cycles on residual stress of ceramics/metal joints, residual stresses in $Si_3N_4$/SUS304 joint specimens were measured before and single thermal-cycle by X-ray diffraction method and finite element method(FEM). The residual stress was found to increase after single thermal-cycle, which was agreeable with the results of residual stress measurement by X-ray diffraction method and residual stress analysis by finite element method. After the residual stress measurement, 4-point bending tests were performed. The relationship between the bending strength, the thermal-cycle temperature and hold time was examined. The bending strength was found to decrease with the increase of residual stress in linear relation.

Fatigue Strength of Fillet Welded Steel Structure Under Out-of-plane Bending Load

  • Kang, S.W.;Kim, W.S.;Paik, Y.M.
    • International Journal of Korean Welding Society
    • /
    • v.2 no.1
    • /
    • pp.33-39
    • /
    • 2002
  • The effect of out-of-plane loads on the fatigue strength of welded steel structures is examined through fatigue tests with weldment of two fillet weld joint types. The results of the fatigue tests are compared with those under axial loads, on the basis of the hot spot stress range at the weld toe. From the result of the comparison, a method on how to incorporate the effect of the out-of-plane bending stress is proposed using design S-N curves derived from fatigue tests under the axial load. The proposed method is useful for rational assessment of the fatigue strength of fillet-welded structures, where combined stresses of the in-plane axial stress and the out-of-plane bending stress are induced simultaneously due to the complexity of applied loads and structural geometry.

  • PDF

A Strength Analysis of Gear Train for Hydro-Mechanical Continuously Variable Transmission

  • Bae, Myung Ho;Bae, Tae Yeol;Yoo, Young Rak
    • International Journal of Advanced Culture Technology
    • /
    • v.6 no.3
    • /
    • pp.163-172
    • /
    • 2018
  • The power train of hydro-mechanical continuously variable transmission(HMCVT) for the middle class forklift makes use of an hydro-static unit, hydraulic multi-wet disc brake & clutches and complex helical & planetary gears. The complex helical & planetary gears are a very important part of the transmission because of strength problems. The helical & planetary gears belong to the very important part of the HMCVT's power train where strength problems are the main concerns including the gear bending stress, the gear compressive stress and scoring failures. The present study, calculates specifications of the complex helical & planetary gear train and analyzes the gear bending and compressive stresses of the gears. It is necessary to analyze gear bending and compressive stresses confidently for an optimal design of the complex helical & planetary gears in respect of cost and reliability. This paper not only analyzes actual gear bending and compressive stresses of complex helical & planetary gears using Lewes & Hertz equation, but also verifies the calculated specifications of the complex helical & planetary gears by evaluating the results with the data of allowable bending and compressive stress from the Stress - No. of cycles curves of gears. In addition, this paper explains actual gear scoring and evaluates the possibility of scoring failure of complex helical & planetary gear train of hydro-mechanical continuously variable transmission for the forklift.

Bending Creep and Creep Facture of Alumina under High-Temperature (알루미나의 고온 굽힘 크리프 및 크리프 파괴)

  • 김지환;권영삼;김기태
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1994.03a
    • /
    • pp.167-174
    • /
    • 1994
  • The creep behavior and creep fracture of alumina at high temperature were investigated under four point flexural test. The steady-state creep behavior was observed at low bending stress and the primary creep until fracture was observed at high bending stress. The loading history of bending stress did not affect on the steady-stated creep rate. Intergranular fracture was dominant for fracture of alumina at room and high temperature. However, transgranular fracture was dominant on creep fracture of alumina under high temperature by nuclueation and growth of microcracks due to residual flaws or cavities in the material.

  • PDF

Bending Creep and Creep Fracture of Sintered Alumina under High-Temperature (알루미나의 고온 굽힘크리프 및 크리프 파괴)

  • 김지환;권영삼;김기태
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.5
    • /
    • pp.543-551
    • /
    • 1994
  • The creep behavior and creep fracture of sintered alumina at high temperature were investigated under four point flexural test. Steady-state creep behavior was observed at low bending stress and primary creep until fracture was observed at hish bending stress. The loading history of bending stress did not affect on steady-state creep rate. Intergranular fracture was dominant for fracture of alumina at room and high temperature. However, transgranular fracture was dominant on creep of alumina under high temperature by nucleation and growth of microcracks due to residual flaws or cavities in the material.

  • PDF

Fatigue Life and Peneration Behaviour of Material under Combined Tension and Bending Stress (인장 굽힘피로를 받는 부재의 피로수명과 균열관통)

  • 남기우
    • Journal of Ocean Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.41-49
    • /
    • 1994
  • The leak-before-break(LBB) design on the large structures such as ship's hull, tank structure, pressure vessels etc. is one of the most inportant subjects for the evaluation and the assurance of safety. In these structures, various loads are acting. In some structural members, therefore, out-of-plane stress due to bending often may become with in-plane stress due to stretching. In the present report, the characteristics of fatigue life and peneration behaviour from a surface cracked plate under combined tension and bending have been studied experimentally and analytically by using eccentricity. Estimation of fatigue crack growth was done with the Newman-Raju formula before penetration, and with the stress intensity factor after penetration proposed by the author. Calculated aspect ratio showed the good agreement with the experimental result. It was also found that particular crack growth behaviour and crack shape after penetration can be satisfactorily evaluated using the K solution proposed.

  • PDF

Study of reinforcement effect of sandwich plate structure according to core shape (샌드위치형 판 구조물의 코어형상에 따른 보강효과에 관한 연구)

  • 한근조;안성찬;심재준;김진영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.740-743
    • /
    • 2001
  • Sandwich structure is widely used in various fields of industry due to its excellent strength and stiffness compared with weight. We studied the sandwich structure which has honeycomb core type. We are concerned about its buckling and bending stress with respect to its side length, thickness and the height ratio of its unit core. After obtaining the buckling critical load of unit core, we applied it to the sandwich structure to observe the bending behavior. When we compared the buckling with bending stress under buckling critical load, we observed that models of which length ratio of unit honeycomb core, A, is lower than 0.04 and the thickness of core, t, is thicker than 0.09 mm, is subjected to the ultimate stress by bending before buckling.

  • PDF