• Title/Summary/Keyword: Bending strength

Search Result 2,735, Processing Time 0.031 seconds

Effective Moment of Inertia of Flexural Members Based on the Concrete Stress-Strain Curve in EC-2 (EC-2의 콘크리트 응력-변형률 곡선에 기반한 휨부재의 유효단면2차모멘트)

  • Yum, Hwan-Seok;Kim, Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.6
    • /
    • pp.655-663
    • /
    • 2016
  • The present study shows the moment-average curvature relationship and effective inertia moment of RC beams obtained from the nonlinear analysis based on the parabola-rectangular stress-strain curve defined in EC-2 code. The variables examined are concrete strength and steel ratio, and moment-average curvature relationship and effective inertia moment obtained are compared with those of the current KCI provisions. As the results of the comparison, the followings could be said: Since the KCI provisions(the Branson method) were originally derived based on the experimental data ranged from 2.2 to 4 of $M/M_{cr}$ and 1.3 to 3.5 of $I_{ut}/I_{cr}$, thereby within these ranges the inertia moments obtained from the nonlinear analysis are closely agreed with those predicted by the Branson method. However, beyond those range the remarkable difference could be found between the two results. In particular, for beams having low steel ratio the inertia moment resulted from the nonlinear analysis are significantly smaller than those obtained from the KCI(Branson) method. This result may imply that the deflection of lightly reinforced members, such as slabs in buildings, becomes much larger than those calculated according to the current design provisions.

Effect of Green Microstructure on Sintered Microstructure and Mechanical Properties of Reaction-Bonded Silicon Carbide (성형미세구조가 반응소결 탄화규소체의 소결미세구조 및 기계적 특성에 미치는 영향)

  • 박현철;김재원;백운규;최성철
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.1
    • /
    • pp.97-105
    • /
    • 1999
  • In the binary system of SiC and carbon, porosity and pore size distribution of green body was controlled by varying pH, by the addition of polyelectrolyte dispersants, and by using different particle size of starting powders. The preforms having different green microstructure were fabricated by slip casting from suspensions having different dispersion condition. The reaction bonding process was carried out for these preforms. The condition of reaction bonding was 1600$^{\circ}C$ and 20 min. under vacuum atmosphere. The analyses of optical and SEM were studied to investigate the effect of green microstructure on that of reaction bonded silicon carbide and subsequently the mechanical properties of sintered body was investigated. Different green microstructures were obtained from suspensions having different dispersion condition. It was found that the pore size could be remarkably reduced for a fine SiC(0.5$\mu\textrm{m}$). The bimodal microstructure was not found in the present study, which is frequently observed in the typical reaction bonded silicon carbide. It is considered that the ratio between SiC and C was responsible for the formation of bimodal microstructure. For the preform fabricated from the well dispersed suspension, the 3-point bending strength of reaction-bonded silicon carbide was 310${\pm}$40 MPa compared to the specimen fabricated from relatively agglomerated particles having lower value 260${\pm}$MPa.

  • PDF

A Nonlinear Structural Analysis for a Composite Structure Composed of Spent Nuclear Fuel Disposal Canister and Bentonite Buffer: Symmetric Rock Movement (고준위폐기물 처분용기와 벤토나이트 버퍼로 이루어진 복합구조물에 대한 비선형 구조해석: 대칭 암반 전단력)

  • 권영주;최석호;최종원
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.4
    • /
    • pp.369-376
    • /
    • 2003
  • In this paper, a nonlinear structural analysis for the composite structure composed of the spent nuclear fuel disposal canister and the 50㎝ thick bentonite buffer is carried out to predict the collapse of the canister while the horizontal symmetric sudden rock movement of 10㎝ is applied on the composite structure. This sudden rock movement is anticipated by the earthquake etc. at a deep underground. Elastoplastic material model is adopted. Drucket-Prager yield criterion is used for the material yield prediction of the bentonite buffer and von-Mises yield criterion is used for the material yield prediction of the canister(cast iron, copper). Analysis results show that even though very large deformations occur beyond the yield point in the bentonite buffet, the canister structure still endures elastic small strains and stresses below the yield strength. Hence, the 50㎝ thick bentonite buffet can protect the canister safely against the 10㎝ sudden rock movement by earthquake etc.. Analysis results also show that bending deformations occur in the canister structure due to the shear deformation of the bentonite buffer.

Development of block-type sidewalk pavement system using snow-melting system (융설시스템을 이용한 조립식 보도포장 기술 개발)

  • Park, Kyungmo;Lee, Jeonguk;Kim, Changduk
    • Korean Journal of Construction Engineering and Management
    • /
    • v.16 no.6
    • /
    • pp.136-143
    • /
    • 2015
  • Snow-melting system has been applied not only to roads for car traffic but also to pavement for the pedestrians safety reason in some of the developed countries such as USA and Canada based on countermeasures against Natural Disasters Act revised in 2000. Even though this system was introduced in korea in 2006 and has been partly applied to car traffic roads, there is few places that the system has been applied. Therefore, in this research a snow-melting system with a block-type to cover a pavement that efficiently transfers heat form heat rays to the top of a pavement and protects the heat rays. A quality check showed that compression and bending strength was improved approximately 5 times stronger and 7 to 10 times more absorption rate than the KS(Korea Industrial Standard) requirement. Moreover, only 10 minute was required to increase temperature above zero with a block-type snow-melting system whereas approximately 180 minute was spent with the existing system. This research is expected to contribute to environmental issues and reduce accidents on a slippery road.

Pin Pull Characteristics of Pin Lead with Variation of Mechanical Properties of Pin Lead in PGA (Pin Grid Array) Package (PGA (Pin Grid Array) 패키지의 Lead Pin의 기계적 특성에 따른 Pin Pull 거동 특성 해석)

  • Cho, Seung-Hyun;Choi, Jin-Won;Park, Gyun-Myoung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.17 no.1
    • /
    • pp.9-17
    • /
    • 2010
  • In this study, von Mises stress and total strain energy density characteristics of lead pin in PGA (Pin Grid Array) packages have been calculated by using the FEM (Finite Element Method). FEM computation is carried out with various heat treatment conditions of lead pin material under $20^{\circ}$ bending and 50 mm tension condition. Results show that von Mises stress locally concentrated on lead pin corners and interface between lead pin head and solder. von Mises stress and total strain energy density decrease as heat treatment temperature of lead pin increases. Also, round shaped corner of lead pin decreases both von Mises stress and total strain energy density on interface between lead pin head and solder. This means that PGA package reliability can be improved by changing the mechanical property of lead pin through heat treatment. This has been known that solder fatigue life decreases as total strain energy density of solder increases. Therefore, it is recommended that both optimized lead pin shape and optimized material property with high lead pin heat treatment temperature determine better PGA package reliability.

Structural analysis of an 38 feet diffusion style for high-speed catamaran yacht (38피트급 보급형 고속 카타마란 요트의 구조해석)

  • Park, Joo-Shin;Ko, Jae-Yong;Lee, Kyoung-Woo;Oh, Woo-Jun
    • Journal of Navigation and Port Research
    • /
    • v.33 no.3
    • /
    • pp.167-174
    • /
    • 2009
  • Recently, design technology of has been required such as catamaran yacht with high-speed according to expand a marine leisure industry. The domestic technical development for design and production of yacht is not actively than Canada, USA, Japan etc. However, with further development of yacht design & technology, it is need to develop a key technology related to increase the value of catamaran yacht. In the present paper, new guideline is suggest for catamaran yacht as like kinds of marine leisure ship in order for fundamental structure design and structural analysis for twin-hulled ship yacht and techniques for structural analysis as sea leisure ship in this research. The class of society has not been proposed formally about regulation and methodology for estimation of strength of small hight-speed craft with satisfying two conditions as noted; length less than 50meters, ratio of length to breadth less than 12. In the present study, we were adopted DNV (Yachts, Design Principles, Design Loads, Hull Structural Design) Rule and KR (FRP rule application guide) for scantling of structural members. Furthermore, ABS rule is used for structural calculation about application of loading conditions for catamaran yacht. This study can be available feedback role to manufacture of 38ft diffusion style for catamaran yacht. It is expected that this study will be a good reference in order to design of catamaran yacht with high-speed.

Lap Details Using Headed Bars and Hooked Bars for Flexural Members with Different Depths (확대머리 철근과 갈고리 철근을 이용한 단차가 있는 휨부재의 겹침이음상세)

  • Lee, Kyu-Seon;Jin, Se-Hoon;Kim, Seung-Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.4
    • /
    • pp.144-152
    • /
    • 2016
  • This paper focuses on the experimental study for investigating the performance for lap splice of hooked or headed reinforcement in beam with different depths. In the experiment, seven specimens, with its variables as the lap length of headed or hooked bar, the existence of stirrups, etc., was manufactured. Bending test was conducted. Lap strengths by test were compared with the theoretical model based on KCI2012. The result showed that the cracks at failure mode occurred along the axial direction to a headed bar. The initial stiffness and the stiffness after initial crack were similar for all specimens. For HS series specimens without stirrups, a 25% increase in lap length was increased 11.8~18.1% maximum strengths. For HH series specimens without stirrups, a increase in lap length did not affect the maximum strengths because of the pryout failure of headed bar. For HS series specimens, the theoretical lap strengths based on KCI2012 considering the B grade lap and the reduction factor for stirrup were evaluated. They are smaller than the test strengths and can ensure the safety in terms of strength capacity. For HH series specimens, the stirrups in the lap zone are needed to prevent the pryout behaviour of headed bar.

Influence of $TiO_2$ on Sintering and Microstructure of Magnesia-Zirconia Composites (마그네시아 지르코니아 복합소결체의 소결과 미세구조에 미치는 $TiO_2$의 영향)

  • Lee, Yun-Bok;Kim, In-Sul;Jang, Yun-Sik;Park, Hong-Chae;O, Gi-Dong
    • Korean Journal of Materials Research
    • /
    • v.4 no.7
    • /
    • pp.775-782
    • /
    • 1994
  • Influence of $TiO_{2}$ addition on sintering behavior and microstructure of MgO-$ZrO_{2}$ composites was studied. $ZrO_{2}$ containing 3mol%Y203 was existed as a c-$ZrO_{2}$ phase due to the formation of solubility of MgO, $TiO_{2}$ and $ZrO_{2}$ when sintered $1400^{\circ}C$ for 2h. All the compositions employed exhibited a similar shrinkage behavior with an end-point shrinkage between 8.58 and 11.00%. The additlon of $TiO_{2}$ promoted densification and the bulk density of specimen containing 1.67wt% $TiO_{2}$ was 3.75g/$\textrm{cm}^3$(98% TD) when $1600^{\circ}C$ for 2h. The amount of solubilities of MgO and TiOz in $ZrO_{2}$ were 5.ti7wt% and 2.62wt%,respectively. They were partially segregated near $ZrO_{2}$ grain boundary in the form of Ti-compounds during cooling. This segregation resulted in the formation microcracks which decreased the bending strength.

  • PDF

Structure Optimization and 3D Printing Manufacture Technology of Pull Cord Switch Components Applied to Power Plant Coal Yard (발전소 저탄장에 적용되는 풀코드스위치 부품의 구조최적화 3D 프린팅 제작기술 개발)

  • Lee, Hye-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.10
    • /
    • pp.319-330
    • /
    • 2016
  • Recently, 3D printing technology has been applied to make a concept model and working mockup of an industrial application. On the other hand, this technology has limited applications in industrial products due to the materials and reliability of the 3D printed product. In this study, the components of a full cord switch module are proposed as a case of a 3D printed component that can be used as a substitute for a short period. These are hub-driven and lever lockup components that have the structural characteristics of breaking down frequently in the emergency operating status. To ensure the structural strength for a substitute period, research of structure optimization was performed because 3D printing technology has a limitation in the materials used. After optimizing the structure variables of the hub-driven component, reasonable results can be drawn in that the safety factors of the left and right switching mode are 1.243 (${\Delta}153.67%$) and 3.156 (${\Delta}404.96%$). The lever lockup component has a structural weak point that can break down easily on the lockup-part because of a cantilever shape and bending moment. The rib structure was applied to decrease the deflection. In addition, optimization of the structural variables was performed, showing a safety factor of 7.52(${\Delta}26%$).

The Study on Physical and Mechanical Properties of Composite Board, Using Byproduct of Plywood for Core Layer (합판 정재단 부산물을 중층 Core로 이용한 복합보드의 물리·기계적 성질에 관한 고찰)

  • Choe, Song-Kyu;Pi, Duck Won;Kang, Seog Goo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.41 no.6
    • /
    • pp.490-496
    • /
    • 2013
  • The board using recycled wood waste chip tends to decrease in terms of physical and mechanical properties. The reasons are notably different shape of chips, components of used adhesive and impurity content, which bring the irregular quality and downgrading of board. More over, the board has higher emissivity of formaldehyde than regular board, because recycled chip contains adhesives that were used to make previous products. This low quality of products weakens the price and quality competitiveness, and it led to bringing the issue of problem in Korean board industry. For these reason, in this study, boards using byproducts of plywood were made to evaluate physical and mechanical properties according to manufacturing conditions. As a result, The board was consists of 4~16 mesh chips for core layer and veneer on both face and they were combined using EMDI, and its' bending strength was 57.7 $N/mm^2$ which is 215% higher than that of OSB (26.8 $N/mm^2$). Moreover, the emissivity of formaldehyde was 0.7 ppm, this board seems to substitute OSB for rated sheathing.