• 제목/요약/키워드: Bending sensor

검색결과 218건 처리시간 0.026초

$CO_2$ 레이저를 이용한 용접튜브 제조공정에서의 용접선 추적 및 용접품질 모니터링 (Weld Quality Monitoring and Seam Tracking in Making of Welded Tube using $CO_2$ Laser)

  • 서정;이제훈;김정오;강희신;이문용;정병훈
    • Journal of Welding and Joining
    • /
    • 제21권7호
    • /
    • pp.34-41
    • /
    • 2003
  • Weld quality monitoring and seam tracking along the butt-joint lengthwise to the tube axis are studied. The material of tube is 60kg/$\textrm{mm}^2$ grade steel sheet, and the longitudinal butt-joint is shaped by 2 roll bending machine. The tube with a thickness of 1.5mm, diameter of 105.4mm and length of 2000mm is successfully obtained by the $CO_2$ laser welding system equipped with a seam tracker and plasma sensor. Experimental results show that the developed welding system can be used for the precision seam tracking and the real-time monitoring of weld quality, and the laser welded tube can be used for car body md component after tubular hydroforming.

SOI웨이퍼의 마이크로가속도계 센서에 대한 열변형 유한요소해석 (Finite Element Analysis of Thermal Deformations for Microaccelerometer Sensors using SOI Wafers)

  • 김옥삼;구본권;김일수;김인권;박우철
    • 한국공작기계학회논문집
    • /
    • 제11권4호
    • /
    • pp.12-18
    • /
    • 2002
  • Silicon on insulator(SOI) wafer is used in a variety of microsensor applications in which thermal deformations and other mechanical effects may dominate device Performance. One of major Problems associated with the manufacturing Processes of the microaccelerometer based on the tunneling current concept is thermal deformations and thermal stresses. This paper deals with finite element analysis(FEA) of residual thermal deformations causing popping up, which are induced in micrormaching processes of a microaccelerometer. The reason for this Popping up phenomenon in manufacturing processes of microaccelerometer may be the bending of the whole wafer or it may come from the way the underetching occurs. We want to seek after the real cause of this popping up phenomenon and diminish this by changing manufacturing processes of mic개accelerometer. In microaccelerometer manufacturing process, this paper intend to find thermal deformation change of the temperature distribution by tunnel gap and additional beams. The thermal behaviors analysis intend to use ANSYS V5.5.3.

유연성 광전도 CdS 박막의 증착조건에 따른 전기적 특성 및 신뢰성 평가 연구 (Electrical Properties and Reliability of the Photo-conductive CdS Thin Films for Flexible Opto-electronic Device Applications)

  • 허성기;조현진;박경우;안준구;윤순길
    • 한국전기전자재료학회논문지
    • /
    • 제22권12호
    • /
    • pp.1023-1027
    • /
    • 2009
  • Cadmium sulfide (CdS) thin film for flexible optical device applications were prepared at $H_2/(Ar+H_2)$ flow ratios on polyethersulfon (PES) flexible polymer substrates at room temperature by radio frequency magnetron sputtering technique. The CdS thin films deposited at room temperature showed a (002) preferred orientation and the smooth surface morphologies. Films deposited at a hydrogen flow ratio of 25% exhibited a photo- and dark-sheet resistance of about 50 and $2.7\;{\times}\;10^5\;{\Omega}/square$, respectively. From the result of the bending test, CdS films exhibit a strong adhesion with the PES polymer substrates and the $Al_2O_3$ passivation layer deposited on the CdS films only shows an increase of the resistance of 8.4% after exposure for 120 h in air atmosphere.

전기유동유체와 압전필름 액튜에이터를 이용한 스마트 외팔보의 진동제어 (Vibration Control of a Smart Cantilevered Beam Using Electro-Rheological Fluids and Piezoelectric Films Actuators)

  • Park, Y.K.;Park, S.B.
    • 한국정밀공학회지
    • /
    • 제14권1호
    • /
    • pp.119-125
    • /
    • 1997
  • This paper deals with an experimental investigation on an active vibration control of ahybrid smart structure(HSS) via an electro-rheological fluid actuator(ERFA) and a piezoelectric film actuator(PFA). Firstly, an HSS is constructed by inserting a silicone oil-based electro-rheological fluid into a hollow can- tilevered beam and perfectly bonding piezoelectric films ofn the upper and lower surfaces of the beam as an actuator and a sensor, respectively. The control scheme of the ERFA tuning stiffness and damping charac- teristics of the HSS with imposed electric fields is formulated as a function of excitation frequencies on the basis of field-dependent respnses. On the other hand, as for the control scheme of the PFA permitting control voltages to generate axial forces or bending moments for suppressing deflections of the HSS, a neuro sliding mode controller(NSC) is employed. Furthermore, an experimental implementation activating the ERFA and the PFA independently is established to carry out an active vibration control in both the transient and forced vibrations. The experimental results exhibit a superior ability of the gtbrid actuation system to tailor elastodynamic response characteristics of the HSS rather than a single class of actuator system alone.

  • PDF

Electrical impedance-based crack detection of SFRC under varying environmental conditions

  • Kang, Man-Sung;An, Yun-Kyu;Kim, Dong-Joo
    • Smart Structures and Systems
    • /
    • 제22권1호
    • /
    • pp.1-11
    • /
    • 2018
  • This study presents early crack detection of steel fiber-reinforced concrete (SFRC) under varying temperature and humidity conditions using an instantaneous electrical impedance acquisition system. SFRC has the self-sensing capability of electrical impedance without sensor installation thanks to the conductivity of embedded steel fibers, making it possible to effectively monitor cracks initiated in SFRC. However, the electrical impedance is often sensitively changed by environmental effects such as temperature and humidity variations. Thus, the extraction of only crack-induced feature from the measured impedance responses is a crucial issue for the purpose of structural health monitoring. In this study, the instantaneous electrical impedance acquisition system incorporated with SFRC is developed. Then, temperature, humidity and crack initiation effects on the impedance responses are experimentally investigated. Based on the impedance signal pattern observation, it is turned out that the temperature effect is more predominant than the crack initiation and humidity effects. Various crack steps are generated through bending tests, and the corresponding impedance damage indices are extracted by compensating the dominant temperature effect. The test results reveal that propagated cracks as well as early cracks are successfully detected under temperature and humidity variations.

유연 반도체/메모리 소자 기술 (Technology of Flexible Semiconductor/Memory Device)

  • 안종현;이혁;좌성훈
    • 마이크로전자및패키징학회지
    • /
    • 제20권2호
    • /
    • pp.1-9
    • /
    • 2013
  • Recently flexible electronic devices have attracted a great deal of attention because of new application possibilities including flexible display, flexible memory, flexible solar cell and flexible sensor. In particular, development of flexible memory is essential to complete the flexible integrated systems such as flexible smart phone and wearable computer. Research of flexible memory has primarily focused on organic-based materials. However, organic flexible memory has still several disadvantages, including lower electrical performance and long-term reliability. Therefore, emerging research in flexible electronics seeks to develop flexible and stretchable technologies that offer the high performance of conventional wafer-based devices as well as superior flexibility. Development of flexible memory with inorganic silicon materials is based on the design principle that any material, in sufficiently thin form, is flexible and bendable since the bending strain is directly proportional to thickness. This article reviews progress in recent technologies for flexible memory and flexible electronics with inorganic silicon materials, including transfer printing technology, wavy or serpentine interconnection structure for reducing strain, and wafer thinning technology.

척추측만증 환자의 재활 치료 보조기 개발을 위한 구조 해석 모델 제시 (Suggestion of Structural Analysis Model Using Auxiliary Rehabilitation Device for a Patient of Spinal Curvature)

  • 박정일;윤호철;고흥;염덕준;선동윤;김영철
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2009년도 정보 및 제어 심포지움 논문집
    • /
    • pp.141-144
    • /
    • 2009
  • The purpose of this study is to develop the auxiliary rehabilitation device for a patient of spinal curvature. The adolescent diopathic scoliosis(AIS) must be treated by rehabilitation brace if Cobb angle is $20^{\circ}{\sim}40^{\circ}$. The rehabilitation brace is consist of 4 vest and 2 hinge parts(hinge and couple bar) that give a force to the ribs. But thin and light hinge parts for young patient failed easily because of unusual movement of the upper body. We studied optimum design and structural analysis of hinge parts when it distorted by tensile and bending force. The specimen of hinge parts were tested to evaluate the failure strength. And we attached circuits with memory and sensor detecting pressure and displacement to recoding stress in hinge parts. These data are used to alarm the patient to stop unusual movement and understand the load history.

  • PDF

압전감지기/작동기를 이용한 복합적층판의 다중모드 진동제어 (Multi-Modal Vibration Control of Laminated Composite Plates Using Piezoceramic Sensors/Actuators)

  • 김문현;강영규;박현철;황운봉;한경섭
    • 대한기계학회논문집A
    • /
    • 제20권10호
    • /
    • pp.3173-3185
    • /
    • 1996
  • Multi-model vibration control of laminated composites plates for various fiver orientations has been carried out by making use of piezolectric materials(PZT) as sensors and actuators. Cantilever plate is used as a specimen to test multi-modal vibration supression under random exitation. Impulse technique is applied to determine the natural frequency, the damping ratio(.zeta.) and the modal damping(2.zeta..omega.) of the first bending and the trosion modes. Two independent controllers are implemented to control the two modes simultaneously and established digitally on the basis of the direct negative velocity feedback control with collocated sensor/actuator. Experimental results for various fiber orientations and feedback gains are compared with finite element analysis considering stiffnesses and dampings of piezoeletiric sensors, actuators and bonding layer.

Crack detection in rectangular plate by electromechanical impedance method: modeling and experiment

  • Rajabi, Mehdi;Shamshirsaz, Mahnaz;Naraghi, Mahyar
    • Smart Structures and Systems
    • /
    • 제19권4호
    • /
    • pp.361-369
    • /
    • 2017
  • Electromechanical impedance method as an efficient tool in Structural Health Monitoring (SHM) utilizes the electromechanical impedance of piezoelectric materials which is directly related to the mechanical impedance of the host structure and will be affected by damages. In this paper, electromechanical impedance of piezoelectric patches attached to simply support rectangular plate is determined theoretically and experimentally in order to detect damage. A pairs of piezoelectric wafer active sensor (PWAS) patches are used on top and bottom of an aluminum plate to generate pure bending. The analytical model and experiments are carried out both for undamaged and damaged plates. To validate theoretical models, the electromechanical impedances of PWAS for undamaged and damaged plate using theoretical models are compared with those obtained experimentally. Both theoretical and experimental results demonstrate that by crack generation and intensifying this crack, natural frequency of structure decreases. Finally, in order to evaluate damage severity, damage metrics such as Root Mean Square Deviation (RMSD), Mean Absolute Percentage Deviation (MAPD), and Correlation Coefficient Deviation (CCD) are used based on experimental results. The results show that generation of crack and crack depth increasing can be detectable by CCD.

이온성 고분자-금속 복합물 액추에이터의 제작 및 이동형 액추에이터에의 응용 (Fabrication of Ionic Polymer-Metal Composite Actuator and Application to Moving Mechanism)

  • 이승기;이상조
    • 센서학회지
    • /
    • 제12권3호
    • /
    • pp.112-120
    • /
    • 2003
  • 이온 전도성 고분자와 금속의 복합물을 제작하고 이를 액추에이터로 이용하였다. 이온 전도성 고분자의 양면에 백금을 무전해 도금하여 전극으로 사용하고 이 두 개의 전극에 교류전압을 인가하면 구부러지는 형태의 빔 형 액추에이터를 제작할 수 있다. 본 논문에서는 이러한 액추에이터의 제작 과정을 상술하고 이를 이용하여 이동형 액추에이터를 제작하였다. 이동형 액추에이터는 전선이 없는 형태로 하단의 전극 레일을 이용하여 전압을 인가하며 진동하는 빔 형 액추에이터의 충격을 흡수하며 앞으로 진행한다. 제작한 이동형 액추에이터는 최대 약 24cm/min 정도의 속도를 갖는 것으로 측정되었다.