• Title/Summary/Keyword: Bending machine

Search Result 389, Processing Time 0.026 seconds

Surface grinding of WC-Co with high quality (WC-Co의 고품위 평면 연삭가공)

  • Heo, S.J.;Kang, J.H.;Kim, W.I.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.5
    • /
    • pp.42-55
    • /
    • 1994
  • Presently, abrasive processing is on eof several methods for cutting and grinding brittle materials, and high quality in dimensional accuracy and surface roughness are often required as a structural components, therefore most of them has to be ground. In manufacturing of tungsten-carbide components, grinding by diamond wheel is usually adopted in order to provide configurational and dimensional accuracy to the components. The present study proposes the experi- mental research of optimum condition to the high quality surface grinding of the WC-Co material using diamond abrasive wheel in order to minimize the damage on the ground surface and to pursue the precise dimension by conventional grinding machine. Brief investigation is carried out to decrease the dressing is constant, theoretical grinding effect such as machining precision is changed according to the speed of workpiece. Accordingly, normal and tangential grinding forces, which are Fn, Ft were analyzed for the machining processes of WC-Co material to obtain optimum grinding conditions, 3-point bending test is carried out to check machining damage on the ground surface layer, which is one of sintered brittle materials.

  • PDF

A study on the Bending Property of Structural Size Skin-Timber (대단면 스킨팀버의 휨 성질에 관한 연구)

  • Kim, Gwang-Chul
    • Journal of the Korean Wood Science and Technology
    • /
    • v.40 no.1
    • /
    • pp.26-37
    • /
    • 2012
  • Recently, the demand and supply on the Hanok have been increased. However, Hanok should be requested larger section of structural members because of excessive roof weight. So, structural skin-timber was manufactured to get a lightweight structural member. The structural skin-timber has exterior shape with larger section but a great volume of wood be removed. The reduced strength of structural skin-timber can be supplemented by hybridizaion of structural member. Japanese larch and Domestic pine were used to manufacture the structural skin-timber. Structural skin-timbers of rectangular shape and cylinder shape were manufactured and tested to evaluate the bending properties. The intended strength property could not be obtained because member had been suffered severe damage by precision deficiency of manufacturing machine. However, if precision of manufacturing machine would be improved and additional hybridizaion of structural skin-timber would be done, lightweight structural member will be able to be manufactured. Structural skin-timber did not showed statistical significancy between two species, so it is possible to use pine mixed with larch. Only MOR of larch showed statistical significancy between rectangular shape and cylinder shape, so it is necessary to use of those as separate things. However, the rest of skin-timber can be judged mixed using because of non statistical significancy. The objective of this study was the development of lightweight larger structural member with relatively strength. If hybrid member of skin-timber could be developed with wood-ceramics, lightweight steel and more, it can be possible to be used as a building material of Hanok, interior material, post & beam construction material and more.

Modal and Stress Analysis of Spur Gear in DC Motor Gearhead using Finite Element Model

  • Pratama, Pandu Sandi;Supeno, Destiani;Jeong, Seongwon;Park, Cunsook;Woo, Jihee;Lee, Eunsook;Yoon, Woojin;Choi, Wonsik
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.17-17
    • /
    • 2017
  • In electric agricultural machine the gearhead is needed to convert the high speed low torque rotation motion generated by DC motor to lower speed high torque motion used by the vehicle. The gearhead consist of several spur gears works as reduction gears. Spur gear have straight tooth and are parallel to the axis of the wheel. Spur gears are the most easily visualized gears that transmit motion between two parallel shafts and easy to produce. The modeling and simulation of spur gears in DC motor gearhead is important to predict the actual motion behavior. A pair of spur gear tooth in action is generally subjected to two types of cyclic stress: contact stress and bending stress including bending fatigue. The stress may not attain their maximum values at the same point of contact fatigue. These types of failure can be minimized by analysis of the problem during the design stage and creating proper tooth surface profile with proper manufacturing methods. To improve its life expectation in this study modal and stress analysis of gearhead is simulated using ansys work bench software based on finite element method (FEM). The modal analysis was done to understand gearhead deformation behaviour when vibration occurs. FEM static stress analysis is also simulated on gearhead to simulate the gear teeth bending stress and contact stress behavior. This methodology serves as an approach for gearhead design evaluation, and the study of gear stress behavior in DC motor gearhead which is needed in the small workshop scale industries.

  • PDF

A comparative study on the bond strength of porcelain to the millingable Pd-Ag alloy

  • Hong, Jun-Tae;Shin, Soo-Yeon
    • The Journal of Advanced Prosthodontics
    • /
    • v.6 no.5
    • /
    • pp.372-378
    • /
    • 2014
  • PURPOSE. The porcelain fused to gold has been widely used as a restoration both with the natural esthetics of the porcelain and durability and marginal fit of metal casting. However, recently, due to the continuous rise in the price of gold, an interest towards materials to replace gold alloy is getting higher. This study compared the bond strength of porcelain to millingable palladium-silver (Pd-Ag) alloy, with that of 3 conventionally used metal-ceramic alloys. MATERIALS AND METHODS. Four types of metal-ceramic alloys, castable nonprecious nickel-chrome alloy, castable precious metal alloys containing 83% and 32% of gold, and millingable Pd-Ag alloy were used to make metal specimens (n=40). And porcelain was applied on the center area of metal specimen. Three-point bending test was performed with universal testing machine. The bond strength data were analyzed with a one-way ANOVA and post hoc Scheffe's tests (${\alpha}=.05$). RESULTS. The 3-point bending test showed the strongest ($40.42{\pm}5.72$ MPa) metal-ceramic bond in the nonprecious Ni-Cr alloy, followed by millingable Pd-Ag alloy ($37.71{\pm}2.46$ MPa), precious metal alloy containing 83% of gold ($35.89{\pm}1.93$ MPa), and precious metal alloy containing 32% of gold ($34.59{\pm}2.63$ MPa). Nonprecious Ni-Cr alloy and precious metal alloy containing 32% of gold showed significant difference (P<.05). CONCLUSION. The type of metal-ceramic alloys affects the bond strength of porcelain. Every metal-ceramic alloy used in this study showed clinically applicable bond strength with porcelain (25 MPa).

THE INFLUENCE OF WATTAGE AND CURING TIME OF MICROWAVE ENERGY ON PHYSICAL PROPERTIES OF THE DENTURE BASE RESIN (극초단파의 출력과 적용시간이 의치상용 레진의 물리적 성질에 미치는 영향)

  • Jeong, Dae-Sung;Lim, Jang-Seop;Jeong, Chang-Mo;Jeon, Young-Chan
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.37 no.6
    • /
    • pp.767-775
    • /
    • 1999
  • The purpose of this study was to evaluate the effect of wattage and curing time on surface hard-ness, three-point bending strength and internal porosity of microwave curing denture base resin. Two sizes of resin specimens were made of Acron $MC^{(R)}\;;\;3.5{\times}10{\times}60mm$ for surface hardness and three-point bending strength measurement and $5{\times}12{\times}60mm$ for internal porosity measurement. They were cured by microwave energy at varing wattages(500W, 700W) and curing times(2min., 3min., 4min.) to determine if a certain wattage/curing time combination would improve physical properties. Surface hardness was measured with Vikers hardness tester, three-point bend-ing strength with universal testing machine and internal porosity was calculated by measuring the weight in air and in water. The results obtained were as follows: 1. There was no significant difference in percent porosity among experimental groups(p>0.05). 2. 500W/3min. group showed the higher surface hardness than 700W/2, 3, 4min. groups(p<0.05), and 700W/4 min. group showed the lower surface hardness than 500W/2, 3, 4min. groups(p<0.05), but there was no significant difference among others(p>0.05). 3. 500W/3min. group yielded the higher value of bending strength than 500W/2min., 700W/3, 4min. groups(p<0.05), but there was no significant difference among others(p>0.05).

  • PDF

The Analysis on Work Clothes' Clothing Comfort and Wearer Mobility of Welding and Grinding Workers in the Machine and Shipbuilding Industries (기계, 조선산업 용접 및 사상공정 근로자의 작업복 착의실태와 착용감 및 동작성능 연구)

  • Park, Gin-Ah;Park, Hye-Won;Bae, Hyun-Sook;Kim, Jie-Kwan
    • Journal of Fashion Business
    • /
    • v.15 no.2
    • /
    • pp.145-159
    • /
    • 2011
  • The study aimed to analyze the status quo of manufacturing work environment and the work clothes' clothing comfort and wearer mobility of welding and grinding work processes in the machine and shipbuilding industries in South Korea. A questionnaire survey was conducted for the study, which consisted of questions about work clothes' clothing comfort and wearer mobility according to body parts. The findings derived from the research were: the high impact levels of work environment factors on welding and grinding work processes were noise, metal fragment, superheat, toxic gas, UV ray factors. Subject workers' assessment of work clothes' clothing pressures were in the levels between 3 (i.e. moderate) and 4 (i.e. comfortable) in a range of 5-point scale. The impact levels of wearer mobility factor were high on the work processes of welding and grinding in machine and grinding in shipbuilding. While welding process in shipbuilding showed a 'moderate' wearer mobility level and this was because its work postures were uncomfortable yet the rate of the motion change was low. The consideration to develop the work clothes specialized for certain work processes should include the materials' protecting performance from the hazardous work environment factors; and work clothes' designs that provides workers with maximized clothing comfort and wearer mobility for bending or tilting postures of upper, lower and lateral body parts defined in the study.

A COMPARATIVE STUDY OF THE 1-PIECE AND 2-PIECE CONICAL ABUTMENT JOINT: THE STRENGTH AND THE FATIGUE RESISTANCE

  • Kwon, Taek-Ka;Yang, Jae-Ho;Kim, Sung-Hun;Han, Jung-Suk;Lee, Jai-Bong
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.6
    • /
    • pp.780-786
    • /
    • 2007
  • Statement of problem. The performance and maintenance of implant-supported prostheses are primarily dependent upon load transmission both at the bone-to-implant interface and within the implant-abutment-prosthesis complex. The design of the interface between components has been shown to have a profound influence on the stability of screw joints. Purpose. The Purpose of this study was to compare the strength and the fatigue resistance of 1-piece and 2-piece abutment connected to oral implant, utilizing an internal conical interface. Material and methods. Twenty $Implatium^{(R)}$ tapered implants were embedded to the top of the fixture in acrylic resin blocks. Ten $Combi^{(R)}$(1-piece) and $Dual^{(R)}$(2-piece) abutments of the same dimension were assembled to the implant, respectively. The assembled units were mounted in a testing machine. A load was applied perpendicular to the long axis of the assemblies and the loading points was at the distance of 7mm from the block surface. Half of 1-piece and 2-piece abutment-implant units were tested for the evaluation of the bending strength, and the others were cyclically loaded for the evaluation of the fatigue resistance until plastic deformation occurred. Nonparametric statistical analysis was performed for the results. Results. Mean plastic and maximum bending moment were $1,900{\pm}18Nmm,\;3,609{\pm}106Nmm$ for the 1-piece abutment, and $1,250{\pm}31Nmm,\;2,688{\pm}166Nmm$ for the 2-piece abutment, respectively. Mean cycles and standard deviation when implant-abutment joint showed a first plastic deformation were $238,610{\pm}44,891$. cycles for the 1-piece abutment and $9,476{\pm}3,541$ cycles for the 2-piece abutment. A 1-piece abutment showed significantly higher value than a 2-piece abutment in the first plastic bending moment (p<.05), maximum bending moment (p<.05) and fatigue strength (p<.05). Conclusion. Both 1-piece and 2-piece conical abutment had high strength and fatigue resistance and this suggests long-term durability without mechanical complication. However, the 1-piece conical abutment was more stable than the 2-piece conical abutment in the strength and the fatigue resistance.

Effects of a drawbar and a rotor in dynamic characteristics of a high-speed spindle (드로우바와 로터가 고속주축계의 동적 특성에 미치는 영향)

  • Chung Won-Jee;Lee Choon-Man;Lee Jung-Hwan;Lim Jeong-Suk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.3 s.180
    • /
    • pp.139-146
    • /
    • 2006
  • The spindle system with a built-in motor can be used to simplify the structure of machine tools, to improve the machining flexibility of machine tools, and to perform the high speed machining. For more quantitative analysis of a built-in motor's dynamic characteristics, that of tile mass and stillness effects are considered. And the drawbar in the spindle can be in various condition according to supporting stiffness between drawbar and shaft. Therefore, in this paper following items are performed and analyzed : 1. Modal characteristics of the spindle. 2. Analysis of rotor's mass and stiffness effects. 3. Modal characteristics of the spindle including drawbar, rotor and tool. The results show enough stiff supports must be provided between shaft and drawbar to prevent occurring drawbar vibration lower than the natural frequency of 1st bending mode of the spindle, and considering the mass and stiffness of built-in motor's rotor is important thing to derive more accurate results.

Analysis of Dynamic Characteristics of A High-speed Milling Spindle with a Drawbar and a Built-in Motor (고속 주축계에서 드로우바와 내장형 모터가 주축계의 동적 특성에 미치는 영향 분석)

  • Lim J.S.;Lee C.M.;Chung W.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1640-1643
    • /
    • 2005
  • This paper presents analysis of dynamic characteristics of a high-speed milling spindle with a drawbar and a built-in motor. The spindle system with a built-in motor can be used to simplify the structure of machine tools, to improve the machining flexibility of machine tools, and to perform the high speed machining. In this system the shaft is usually assumed as a rigid rotor. In this paper, the modal characteristics of drawbar in high-speed milling spindle system due to supporting stiffness between drawbar and shaft and considering the mass and stiffness effects of the built-in motor's rotor are analyzed by numerical method. The result shows enough stiff supports must be provided between shaft and drawbar to prevent occurring drawbar vibration lower than the natural frequency of 1st bending mode of spindle. And considering the mass and stiffness of built-in motor's rotor is important thing to derive more accurate results.

  • PDF

A Study on Dynamic Characteristics Analysis of Spindle Unit for Two-for-One Twister (투포원 연사기용 스핀들 유니트의 동특성 해석에 관한 연구)

  • Kim, Gwang-Yeong;Kim, Jong-Su
    • 연구논문집
    • /
    • s.27
    • /
    • pp.127-139
    • /
    • 1997
  • Two-for-one twister is a kind of textile machine and makes special fancy yarn which is twisted two times per one revolution in order to increase tensile strength and wear resis-tance of yarn. Spindle mechanism has to be stable and continuous motion in high speed revolution, and then optimal design is necessary to analyze dynamic characteristics of spindle unit. Spindle unit is consist of blade and rotary disc that are cylindrical body of revolution. For analysis of the dynamic characteristics of spindle unit, transfer matrix method is used and a numerical code SPINDLE also. Torsion and natural bending frequency of the spindle unit are examined. Its displacement mode is studied in function of variable revolutions.

  • PDF