• Title/Summary/Keyword: Bending capacity

Search Result 603, Processing Time 0.026 seconds

An Experimental Study on the Mechanical Properties of HPFRCCs Reinforced with the Micro and Macro Fibers (마이크로 및 매크로 섬유에 의해 보강된 고인성 시멘트 복합재료의 역학적 특성에 관한 실험적 연구)

  • Kim Moo-Han;Kim Jae-Hwan;Kim Yong-Ro;Kim Young-Duck
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.2 s.86
    • /
    • pp.263-271
    • /
    • 2005
  • HPFRCC(High Performance Fiber Reinforced Cementitious Composite) is a class of FRCCs(Fiber Reinforced Cementitious Composites) that exhibit multiple cracking. Multiple cracking leads to improvement in properties such as ductility, toughness, fracture energy, strain hardening, strain capacity, and deformation capacity under tension, compression, and bending. These improved properties of HPFRCCs have triggered unique and versatile structural applications, including damage reduction, damage tolerance, energy absorption, crack distribution, deformation compatibility, and delamination resistance. These mechanical properties of HPFRCCs become different from the kinds and shapes of used fiber, and it is known that the effective size of fiber in macro crack is different from that in micro crack. This paper reports an experimental findings on the mechanical properties of HPFRCCs reinforced with the micro fiber(PP50, PVA100 and PVA200) and macro fiber(PVA660, SF500). Uniaxial compressive tests and three point bending tests are carried out in order to compare with the mechanical properties of HPFRCCs reinforced with micro fibers or hybrid fibers such as compressive strength, ultimate bending stress, toughness, deformation capacity and crack pattern under bending, etc.,

The Behavior and Capacity of Lateral Loaded Rigid Pile Characteristics in Multi-layered Soil Conditions (다층지반에 관입된 강성말뚝의 수평 거동 및 수평 지지력 특성)

  • Kyung, Doo-Hyun;Kang, Beong-Joon;Hong, Jung-Moo;Lee, Jun-Hwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.4
    • /
    • pp.77-90
    • /
    • 2009
  • In this study, experimental analysis was performed about lateral load capacity and behavior of laterally loaded-bored rigid piles in muti-layered soil conditions. Lateral pile load tests were performed for muti-layerd soils consisting of different relative density. Ultimated lateral load capacities were measured from lateral load-displacement curves and compared with estimated values using theoretical methods. Bending moments and unit lateral capacity distribution of surrounding piles were measured from attached strain gauges and earth pressure sensors on the pile. It was found that ultimated lateral load capacities were different from the muti-layered soil conditions, and measured values were lower than estimated values. The bending moment distributions of the pile were similar all the time. Unit lateral capacity distributions were a little different from muti-layered soil conditions, but basically similar to the distribution proposed by Prasad and Chari (1999).

Ultimate Strength of Composite Beams with Unreinforced Web Opening (유공 합성보의 강도식에 관한 연구)

  • 김창호;박종원;김희구
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.5
    • /
    • pp.101-110
    • /
    • 2000
  • A practical approach of calculating the ultimate strength of composite beams with unreinforced web opning is proposed through shear behavioral tests. In this method, the slab shear contribution at the opening is calculated as the smaller value of the pullout capacity of shear connector at the high moment end and the one way shear capacity of slab. A simple interaction equation is used to predict the ultimate strength under simultaneous bending moment and shear force. Strength prediction by the proposed method is compared with previous test results and the predictions by other analytical methods. The comparison shows that the proposed method predicts the ultimate capacity with resonable accuracy.

A Study on the Head of PHC Repair Applying the Reinforcement of Bending the Rebar (절곡보강철근을 적용한 PHC말뚝의 머리보강에 관한 연구)

  • Hong, Suk-Hee;Park, Hong-Sick;Kim, Eun-Kyum
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2450-2455
    • /
    • 2011
  • The importance for the department combined is increased concerning structures and pile foundation with the introduction of structures in sesmic design of structures. Therefore, the railway bridge and the road bridge standards approach for the earthquake about above the department combined by using strong coupling. Also, mechanical interpretation is performed as foundation combined with the head of pile foundation assuming the pillars. Accordingly, this study suggests the head of PHC repair can enhance the load carrying capacity and constructability of the department combined after bending, pulling, shear and compressive tests by appling the reinforcement of bending the rebar, the reinforcement of pulling the rebar.

  • PDF

Analysis of Bending Behavior of Skew Concrete Slab Bridges (콘크리트 슬래브 사교의 휨거동 해석)

  • 정성우;정재호;윤순종
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04b
    • /
    • pp.409-414
    • /
    • 1998
  • In this paper, we present the results of finite element analyses pertaining to the mechanical behavior of simply supported skew concrete slab bridges. To investigate the bending behavior of skew concrete slab three skewed slabs are modelled with different plate aspect ratios. In each modelled skew plate, skew angles are varied from 0$^{\circ}$to 45$^{\circ}$ by 5$^{\circ}$interval. It is found that the support reactions at the obtuse corner are remarkably higher than the other support reactions. In the design of skew slab bridge bearings, the capacity of bearing installed at the obtuse corner should be very high or otherwise the spacing between the bearings at this corner must be adjusted appropriately to resist extra high reactions.

  • PDF

Structural Characteristics of Damaged Offshore Tubular Members

  • Cho, Sang-Rai;Kwon, Jong-Sig;Kwak, Dong-Il
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.4
    • /
    • pp.1-7
    • /
    • 2010
  • Over the past few decades various experimental and theoretical investigations have been performed on offshore tubular members with regard to damage resistance and residual strength. Analysis of damaged tubular members requires a three-dimensional shell analysis for accurate results. Even though various commercial packages are available for this purpose, a beam-column analysis is preferred for offshore structural designs. In this paper, empirical equations are provided for a more accurate beam-column analysis of damaged tubes including the relationships between the lateral denting load and the depth of the dent, the rate of dent deepening due to increasing curvature and the longitudinal variation in the dent depth of damaged tubes. A design equation to predict the ultimate bending capacities of damaged offshore tubular members is also presented.

Seismic behavioral fragility curves of concrete cylindrical water tanks for sloshing, cracking, and wall bending

  • Yazdabad, Mohammad;Behnamfar, Farhad;Samani, Abdolreza K.
    • Earthquakes and Structures
    • /
    • v.14 no.2
    • /
    • pp.95-102
    • /
    • 2018
  • Seismic fragility curves of concrete cylindrical tanks are determined using the finite element method. Vulnerabilities including sloshing of contents, tensile cracking and compression failure of the tank wall due to bending are accounted for. Effects of wall flexibility, fixity at the base, and height-diameter ratio on the response are investigated. Tall, medium and squat tanks are considered. The dynamic analysis is implemented using the horizontal components of consistent earthquakes. The study shows that generally taller tanks are more vulnerable to all of the failure modes considered. Among the modes of failure, the bending capacity of wall was shown to be the critical design parameter.

Flexural studies on reinforced geopolymer concrete beams under pure bending

  • Sreenivasulu, C.;Jawahar, J. Guru;Sashidhar, C.
    • Advances in concrete construction
    • /
    • v.8 no.1
    • /
    • pp.33-37
    • /
    • 2019
  • The present investigation is mainly focused on studying the flexural behavior of reinforced geopolymer concrete (RGPC) beams under pure bending. In this study, copper slag (CS) was used as a partial replacement of fine aggregate. Sand and CS were blended in different proportions (100:0, 80:20, 60:40 and 40:60) (sand:CS) by weight. Fly ash and ground granulated blast furnace slag (GGBS) were used as binders and combination of sodium hydroxide (8M) and sodium silicate solution were used for activating the binders. The reinforcement of RGPC beam was designed as per guidelines given in the IS 456-2000 and tested under pure bending (two-point loading) after 28 days of ambient curing. After conducting two point load test the flexural parameters viz., moment carrying capacity, ultimate load, service load, cracking moment, cracking load, crack pattern and ultimate deflection were studied. From the results, it is concluded that RGPC beams have shown better performance up to 60% of CS replacement.

Ultimate Strength of Composite Beams with Unreinforced Web Opening (유공 합성보의 극한강도식의 제안)

  • 김창호;박종원;김희구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.369-374
    • /
    • 1999
  • A practical approach of calculating the ultimate strength of composite beams with unreinforced web opening is proposed. In this method, the slab shear contribution at the opening is calculated as the smaller of the shear strength of the slab and the pullout capacity of the shear connectors at the high moment end. A simple interaction equation is used to predict the ultimate strength under simultaneous bending moment and shear force. Strength prediction by the proposed method is compared with previous test results and the predictions by other analytical method. The comparison shows that the proposed method predicts the ultimate capacity with resonable accuracy.

  • PDF

The Fundamental study on Development of Ceiling materials using the Zeolite and Stone dust, Sludge (제올라이트와 석분 및 슬러지를 이용한 천장재의 개발에 관한 기초적 연구)

  • 임병호;류희정;최영준;이승조;김태곤;박정민;김화중
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.777-784
    • /
    • 1997
  • This paper is fundamental study to develop ceiling materials, using the properties of Zeolite, stone dust and sludge for the purpose of prevention of environmental pollution and reuse of industrial wastes. According to latin square method, We estimated to the significant level ad optimum level for a significant factor, and investigated to the significant degree to extend each factor for required capacity. Thus, we investigated for required capacity in ceiling material such as, compressive and bending strength, absorptivity and thermal conductivity.

  • PDF