• Title/Summary/Keyword: Bending

Search Result 8,625, Processing Time 0.039 seconds

Effects of Wearing between Respirators and Glasses Simultaneously on Physical and Visual Discomforts and Quantitative Fit Factors (안면부 여과식 방진마스크와 안경 동시 착용 시 불편감과 밀착계수 비교)

  • Eoh, Won Souk;Choi, Youngbo;Shin, Chang Sub
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.2
    • /
    • pp.52-60
    • /
    • 2018
  • This study compares the differences of the fit factor by the order of wearing preference between Particulate filtering facepiece respirators(PFFR) and glasses when participants wore simultaneously and a survey of physical and visual complaint. Recognition level about fit of respirators was investigated and the educational (before- and after-) effect of the fit factor. When participants wore PFFR and glasses, physical complaints were nose pressure, slipping, nose and ear pressure, ear pressure and rim loosen, the most highly physical complaints were nose pressure. Visual complaints were demister, blurry vision, dizziness, visual field, and lens dirty, the most highly visual complaints were demister. But, there was significant difference in physical complaint such as nose pressure(10.3%), slipping (23.0%), nose and ear pressure(14.3%), and rim loosen(16.2%), visual complaint such as visual field(13.8%) and lens dirty(32.4%). For the recognition of fit of respirators, respirators fitness, leak site, an initial point and an object, faulty factor, recognition level was higher. Fit factor was increased after education of proper wearing of respirator. Change of the fit factor was smaller compared to the normal breathing and after 6 actions in case of after education. Questionnaire consisted of general characteristics and physical/visual complaint, recognition of fit. Complaints were measured after the QNFT with multiple choices. Quantitative fit factor was measured by device and compared the result of (before- and after-) educational effect. Also, we selected to 6 actions (Normal breathing, Deep breathing, Bending over, Turning head side to side, Moving head up and down, Normal breathing) among 8 actions OSHA QNFT (Quantitative Fit testing) protocol to measure the fit factors. The fit factor was higher after the training (p=0.000). Descriptive statistics, paired t-test, and Wilcoxon analysis were performed to describe the result of questionnaire and fit test. (P=0.05) Therefore, it is necessary to investigate the quantitative research such as training program and glasses fitting factor about the wearing of PFFR and glasses simultaneously.

Evaluation of the Cytotoxicity and Mechanical Strength of Dental Duplex Stainless Steel Orthodontic Wire (치과 교정용 듀플렉스 스테인리스 스틸 와이어의 기계적 강도 및 세포독성 평가)

  • Lee, Myung-Kon;Kim, Chi-Young
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.9
    • /
    • pp.309-317
    • /
    • 2010
  • The stainless steel wire is extensively used for the orthodontic treatment. But, the stainless steel wire that has commonly superior corrosion resistance has caused hypersensitive reaction or allergy as side effects because of corrosion in the oral environment. For improving the problem of corrosion, we was evaluated the suitability of the duplex stainless steel(DSS) as orthodontic wire through this study. The DSS wire was evaluated the mechanical strength and bio-stability for suitability and bio-compatibility as orthodontic wire. In this work, the DSS and stainless steel(SS) as common use of medical grade were prepared for the tensile strength test. The DSS wire were treated by heat. and Temperature conditions of the heat treatment were $28^{\circ}C$, $500^{\circ}C$, $600^{\circ}C$, $700^{\circ}C$, $800^{\circ}C$, $900^{\circ}C$, respectively. And the DSS wires that treated by heat on the optimum temperature condition were conducted the bending moment test and calculated the S-Max value and the modulus of elasticity. For evaluating the bio stability, each materials were conducted in vitro test for measuring the cell survival rate. The most interesting results was that the tensile strength test of SS wire($8.17\times10^4\;N/mm^2$) and DSS wire($8.05\times10^4\;N/mm^2$) that treated at $500^{\circ}C$ by heat were similar in mechanical strength. In the bio-stability study, the DSS has no cytotoxicity (p=0.05) Thus, we could make a conclusion that the duplex stainless steel wire has vastly superior corrosion resistance was suitable as orthodontic wire.

Mechanical Properties of Carbon Fiber/Si/SiC and Carbon Fiber/C/SiC Composites (탄소섬유/Si/SiC 및 탄소섬유/탄소/SiC 복합재의 기계적 물성)

  • 신동우;박삼식;김경도;오세민
    • Composites Research
    • /
    • v.12 no.3
    • /
    • pp.8-16
    • /
    • 1999
  • Carbon woven fabric/C/SiC composites were fabricated by multiple impregnations of carbon woven fabric/carbon preform with the polymer precursor of SiC, i.e., polycarbosilane. In addition, two kinds of low density carbon/carbon preforms which had different fiber volume fraction and fiber orientation, i.e., a carbon woven fabric(${\thickapprox}$55 vol%)/carbon and a chopped carbon fiber${\thickapprox}$40 vol%)/carbon composites, were reaction-bonded with a silicon melt at 1$700^{\circ}C$ in a vacuum to fabricate dense carbon fiber/Si/SiC composites. The reaction-bonding process increased the density to ~2.1 g/$cm^3$ from 1.6 g/$cm^3$ and 1.15 g/$cm^3$ of a carbon woven and a chopped carbon preforms, respectively. All of the composites fractured with extensive fiber pull-out. The higher the density the higher the stiffness and proportional limit stress. The mechanical properties obtained from a three-point bend and tension tests were compared. The ratios of the peak tensile stresses to the bending strengths of a carbon woven and a chopped carbon composites were about one-third, respectively. The carbon woven fabric/Si/SiC composites with density of 2.06 g/$cm^3$ showed ~120 MPa of ultimate strength and ~80 MPa of proportional limit in bend testing.

  • PDF

Study of a Mixed Finite Element Model for the Analysis of a Geometrically Nonlinear Plate (기하학적 비선형 판재 해석을 위한 혼합형 FE Model 연구)

  • Kim, Woo-Ram;Choi, Youn-Dae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.10
    • /
    • pp.1427-1435
    • /
    • 2010
  • A mixed finite element model was developed using the classical plate theory to analyze the nonlinear bending of a plate. The appropriate weight functions for the constraints integrated over the domain were determined by the Lagrange multiplier method by using the principle of minimum virtual energy; which provides the constitutive relations between force-like variables and strains. All of detail terms of element wise coefficient matrices and associate tangent matrices to be used in the Newton iterative method are presented. Then, the linear solutions of the current model and those of the traditional displacement model under the SS (simple support) boundary conditions were compared with the existing analytical solution. The post-processed images of the nonlinear results of the force-like variables are presented to show the continuity of the solutions at the joint of the element boundaries. Finally, the converged nonlinear finite element solutions of the current model are compared with those of existing traditional displacement model.

A Study of Structural Stress Technique for Fracture Prediction of an Auto-Mobile Clutch Snap-Ring (클러치 스냅링부 파괴 예측을 위한 구조응력기법 연구)

  • Kim, Ju Hee;Myeong, Man Sik;Oh, Chang Sik;Kim, Yun Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.2
    • /
    • pp.175-183
    • /
    • 2016
  • The endurance reliability assessment of a highly complex mechanism is generally predicted by the fatigue life based on simple stress analysis. This study discusses various fatigue life assessment techniques for an automobile clutch snap ring. Finite element analyses were conducted to determine the structural stress on the snap ring. Structural stress that is insensitive in regards to the mesh size and type definition is presented in this study. The structural stress definition is consistent with elementary structural mechanics theory and provides an effective measure of a stress state that pertains to fatigue behavior of welded joints in the form of both membrane and bending components. Numerical procedures for both solid models and shell or plate element models are presented to demonstrate the mesh-size insensitivity when extracting the structural stress parameters. Conventional finite element models can be used with the structural stress calculations as a post-processing procedure. The two major implications from this research were: (a) structural stresses pertaining to fatigue behavior can be consistently calculated in a mesh-insensitive manner regardless of the types of finite element models; and (b) by comparing with the clutch snap-ring fatigue test data, we should predict the fatigue fractures of an automobile clutch snap ring using this method.

A Study on the Weight-Reduction Design of High-Speed Maglev Carbody made of Aluminum Extrusion and Sandwich Composite Roof (알루미늄 압출재와 샌드위치 복합재 루프를 적용한 초고속 자기부상 열차의 차체 경량화 설계 연구)

  • Kang, SeungGu;Shin, KwangBok;Park, KeeJun;Lee, EunKyu;Yoon, IllRo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.10
    • /
    • pp.1093-1100
    • /
    • 2014
  • The purpose of this paper is to suggest a weight-reduction design method for the hybrid carbody of a high-speed maglev train that uses aluminum extrusion profiles and sandwich composites. A sandwich composite was used on the roof as a secondary member to minimize the weight. In order to assemble the sandwich composite roof and aluminum extrusion side frame of the carbody using welding, a guide aluminum frame located at the four sides of the sandwich composite roof was introduced in this study. The clamping force of this guide aluminum frame was verified by three-point bending test. The structural integrity and crashworthiness of the hybrid carbody of a high-speed maglev train were evaluated and verified according to the Korean Railway Safety Law using a commercial finite element analysis program. The results showed that the hybrid carbody composed of aluminum extrusion frames and a sandwich composite roof was lighter in weight than a carbody made only of aluminum extrusion profiles and had better structural performance.

A Study on the Standardization of the Test Method Upon Testing the Anterior Cruciate Ligament Damage Using TELOS (TELOS를 이용한 Knee Stress (Lachman)검사의 표준화에 대한 연구)

  • Lim, Jongcheon;Han, Dongkyoon
    • Journal of the Korean Society of Radiology
    • /
    • v.8 no.2
    • /
    • pp.57-63
    • /
    • 2014
  • This study aims to find out the standardized test criteria regarding patients with the anterior cruciate ligament damage by identifying the degree of the flexion gap of femur and tibia upon bending of the anterior cruciate ligament in order to carry out the accurate test of such impairment. On the standardized test method and judgement criteria upon the anterior cruciate ligament test using Telos, it has been shown that there was no significant difference in the results according to the position of a fixed roller in the anterior cruciate ligament test for normal patients. However, in a test for patients who had undergone the anterior cruciate ligament reconstruction, it has been shown that the measured values of the anterior cruciate ligament tended to be pushed when the position of a fixed roller was less than 1cm in the test according to the position of a fixed roller of Telos (less than 1cm, more than 3cm), and this was statistically significant. The anterior cruciate ligament test (knee stress test) is a limited method used in orthopedics and rehabilitation medicine, and there have been no standardized test guidelines available yet although numerous ligament measurement tests have been performed. In addition, since the measured values are often different depending on testers even on the test that is expected to give the same result, the reproducibility of the test is still low. Accordingly, it is considered that the criteria for the anterior cruciate ligament test need to be established, and this would contribute to the accuracy of the diagnosis through the accurate test and standardized measurements.

Improvement of Flexural Performance for Deep-Deck Plate using Cap Plate (캡플레이트를 이용한 장스팬용 춤이 깊은 데크의 휨성능 개선)

  • Park, K.Y.;Nam, Y.S.;Choi, Y.H.;Kim, Y.H.;Choi, S.M.
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.5
    • /
    • pp.555-567
    • /
    • 2013
  • Slim floor system using deep decks has been developed and employed in Europe to reduce the floor height of steel structures. Although long span buildings involving the issue of reducing floor height are being increasingly built in Korea, employing deep decks in more than 7m long span structures is likely to cause problems associated with excessive deflection. This study is applied to the long-span concrete casting of the deep deck plate usability of deflection due to bending and torsional instability of open cross-section, as a way to improve the problem of cap plates are suggested, and the optimum length of reinforcement and location are derived from theoretic estimation. The cap plates are placed on the deep decks with regular intervals to overcome the instability of open sections, improve the stiffness of the sections and control the deflection at the centers. The improvement in flexural capacity associated with the location of the cap plates and the length of reinforcement are verified through analysis and test.

Manufacture and Performance Evaluation of Medium-density Fiberboard Made with Coffee Bean Residue-Wood Fiber (커피박과 목섬유를 이용한 중밀도섬유판의 제조 및 성능 평가)

  • Yang, In;Lee, Kwang-Hyung;Oh, Sei-Chang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.41 no.4
    • /
    • pp.293-301
    • /
    • 2013
  • This study discusses the feasibility of coffee bean residue as a raw material of medium-density fiberboard (MDF). In this relation, the effect of coffee bean residue known as an absorbent material on the physical and mechanical properties of MDF manufactured at its different addition level. Coffee bean residue which is a by-product of coffee mill and large amount of waste left over after processing for instant coffee was added at the level of 3, 6, and 9% on dry basis and urea formaldehyde resin was used as the adhesive. The MDF made with mixture of wood fiber and coffee bean residue was tested for physical and mechanical properties as well as formaldehyde emission. The bending strength and internal bonding strength of the MDF made with mixture of wood fiber-coffee bean residue were higher than that of the KS standard in randomized mat structure type, but not in layered mat structure type. Also, the physical properties of MDF made with mixture of wood fiber-coffee bean residue showed a considerable improvement in thickness swelling over the commercial MDF. More importantly, the formaldehyde emission rate of MDF made with mixture of wood fiber-coffee bean residue met the KS standard and was close to that of commercial MDF. These results showed the feasibility of coffee bean residue as a raw material for the production of environmentally-friendly MDF. Additional works on adhesive-coffee bean compatibility, improvement of moisture absorption effect and reduction the formaldehyde emission rate by carbonization of coffee bean residue may be required.

A Study on the Crease Recovery Behavior of Core-spun Yarn Woven Fabrics (코어방적사직물의 구김회복거동에 관한 연구)

  • Kwon Ok-Kyung;Sung Su-Kwang;Kim Hyo-Dae
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.13 no.3 s.31
    • /
    • pp.259-267
    • /
    • 1989
  • In this paper, the fabric specimen undergoes repeated laundering under given condition. After this cyclic laundering was applied, the crease recoveries of the specimen were measured using shirley crease revovery tester in order to evaluate the effect of factors at given condition during crease deformation. 5 samples of grey plain cloth were desized, alkali-scoured, bleached, whased with water, and air-dried. All tests were made on samples preconditioned to $65\%\;RH\;and\;20^{\circ}C$. The experimental results were analysed statistically to relate crease recoveries and the properties of smaples, recovery periods (time) of crease. Furthermore, the crease recoveries of core-spun yarn woven fabrics were discussed in comparison with those values for $100\%$ combed cotton yarn woven fabric and $65\%$ polyester $35\%$ carded cotton blended yarn woven fabric. The results obtained are as follows; 1. Regardless of materials, remarkable decrease are observed in crease recoveries about 1-5 cycles of the repeated laundering, but slack decrease are observed in crease recoveries after 5 cycle of the re-peated laundering. 2. Crease recoveries ($\alpha$) of core-spun yarn woven fabrics are relate to recovery periods (t) of crease as follows; log$\alpha$=0.01415 log t+2.1168 ($r^2=0.94$) 3. Core-spun yarn woven fabrics were superior to $100\%$ combed cotton yarn woven fabrics and $65\%$ polyester $35\%$ carded cotton blended yarn woven fabric in crease recoveries. 4. Crease recoveries ($\alpha$) of core-spun yarn woven fabrics are relate to cover factor (CF), thickness (T) at pressure 0.5 $gf/cm^2$, weight (W) as follows; log$\alpha$=-0.3482 log CF-0.4924 log T-0.4727 W+2.4243 ($r^2=0.88$) 5. Crease recoveries ($\alpha$) of core-spun yarn woven fabrics are relate to 2HB/B, 2HB/W, $\sqrt[3]{B/W}$, WC/T which are concerning to formation of weared clothes and bending Iran formation behavior as follows: log $\alpha$=0.0091 2HB/B+0.4667 2HB/W+0.0185 $\sqrt[3]{B/W}$+0.0114 WC/T+1.8433 ($r^2=0.86$)

  • PDF