• Title/Summary/Keyword: Bend test

Search Result 187, Processing Time 0.028 seconds

Static and Fatigue Fracture Assessment of Hybrid Composite Joint for the Tilting Car Body (틸팅차량용 차체의 Hybrid 복합재 접합체결부의 정적 및 피로 파괴 평가)

  • Jung, Dal-Woo;Kim, Jung-Seok;Seo, Sueng-Il;Jo, Se-Hyun;Choi, Nak-Sam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.2 s.257
    • /
    • pp.166-173
    • /
    • 2007
  • Fatigue fracture behavior of a hybrid bolted joint was evaluated in comparison to the case of static fracture. Two kinds of specimens were fabricated for the mechanical tests; a hybrid bolted joint specimen for the shear test and a hybrid joint part specimen applied in the real tilting car body for the bending test. Characteristic fracture behaviors of those specimens under cyclic toads were obviously different from the case under static loads. For the hybrid bolted joint specimen, static shear loading caused the fracture of the bolt body itself in a pure shear mode, whereas cyclic shear loading brought about the fracture at the site of local tensile stress concentration. For the hybrid joint part specimen, static bend loading caused the shear deformation and fracture in the honeycomb core region, while cyclic bend loading did the delamination along the interface between composite skin and honeycomb core layers as well as the fracture of welded joint part. Experimental results obtained by static and fatigue tests were reflected in modifications of design parameters of the hybrid joint structure in the real tilting car body.

Effects of Lap Splice Details on Seismic Performance of RC Columns (RC기둥의 내진성능에 미치는 겹침 이음상세의 영향)

  • Kim, Chul-Goo;Park, Hong-Gun;Kim, Tae-Wan;Eom, Tae-Sung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.6
    • /
    • pp.351-360
    • /
    • 2016
  • In regions of low-to-moderate seismicity, various types of lap splices are used for longitudinal reinforcement of columns at the plastic hinge zones. The seismic performance of such lap spliced columns, such as strength, deformation capacity, and energy dissipation, is affected by material strengths, longitudinal re-bar size, confinement of hoops, lap splice location, and lap splice length. In the present study, cyclic loading tests were performed for columns using three types of lap splices (bottom offset bar splice, top offset bar splice, and splice without offset bend). Lap splice length($40d_b$ and $50d_b$) was also considered as test parameters. Ties with 90-degree end hooks were provided in the lap splice length. The test results showed that strength, deformation capacity, and energy dissipation of columns significantly differed depending on the details and the length of lap splices. The bottom offset bar splice showed high ductility and energy dissipation but low strength; on the other hand, the top offset bar splice and the splice without offset bend showed high strength but moderate ductility and energy dissipation.

Mixed Mode Crack Propagation using the High Strength Concrete Disk (고강도 콘크리트 디스크를 이용한 혼합모드 균열전파)

  • 진치섭;김희성;박현재;김민철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.733-738
    • /
    • 2000
  • It is difficult to obtain accurate fracture toughness values by RILEM committees proposed three point bend test(TPB) because the shape of load-deflection curve is irregular and final crack propagation occurs after some slow stable cracking. However, for disk test, fracture toughness is easily obtained from crack initial load. We examined the cracked high strength concrete disk and the experimental results were compared with the results by finite element analysis(FEA). Also we compared experimental fracture locus with theoretical fracture locus.

  • PDF

A study on the computed aided gating design in gray cast iron (컴퓨터를 이용한 회주철의 탕구방안 설계에 관한 연구)

  • Choi, Jeong-Kil;Kim, Dong-Ok
    • Journal of Korea Foundry Society
    • /
    • v.6 no.1
    • /
    • pp.27-35
    • /
    • 1986
  • The gating design of gray cast iron was programmed in a Personal computer. By this program, casting test was done. The results obtained are as follows. 1. Gating design that can calculate the velocity of metal flow and size in each gate section by knowing the loss coefficient caused by friction loss and bend loss was programmed. 2. In the test casting, the gating ratio was changed into 1.1:1.3:1, 1:2:2, 1:4:4. And sound casting, free of sand washing defect, was obtained at the velocity of 35.5cm/sec in ingate.

  • PDF

Fracture Toughness of Concrete Brazilian Disk according to Maximum Size of Coarse Aggregate (굵은골재의 최대치수에 따른 콘크리트 브라질리언 디스크의 파괴인성)

  • Lee, Seung-Hoon;Kim, Hee-Sung;Jang, Hee-Suk;Jin, Chi-Sub
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.3
    • /
    • pp.185-196
    • /
    • 2006
  • Fracture toughness is a material property for crack initiation and propagation in fracture mechanics. For mode I fracture toughness measurement in concrete, RILEM committees 89-FMT proposed three-point bend tests based on the two-parameter fracture model. But, there is no proposed test method as a standard for mixed mode test for now. And RILEM three-point bend test procedure is complicate. Therefore, in this study, brazilian disks of various size were designed as the concrete with a similar specified concrete strength and maximum size of coarse aggregate($G_{max}$) were respectively 20mm and 40mm. And mode I fracture toughness of brazilian disks was compared with that of RILEM three-point bend test. As a result, it was suggested appropriate size(thickness, diameter) and notch length ratio of brazilan disk on the $G_{max}$. And it was verified that stress intensity factors for mixed mode can be easily calculated with the disk specimen. Stress intensity factors of a concrete brazilian disk were evaluated with finite element analysis and five terms approximation for comparison.

Determination of Double-K Fracture Parameters of Concrete Using Split-Tension Cube: A Revised Procedure

  • Pandey, Shashi Ranjan;Kumar, Shailendra;Srivastava, A.K.L.
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.2
    • /
    • pp.163-175
    • /
    • 2016
  • This paper presents a revised procedure for computation of double-K fracture parameters of concrete split-tension cube specimen using weight function of the centrally cracked plate of finite strip with a finite width. This is an improvement over the previous work of the authors in which the determination of double-K fracture parameters of concrete for split-tension cube test using weight function of the centrally cracked plate of infinite strip with a finite width was presented. In a recent research, it was pointed out that there are great differences between a finite strip and an infinite strip regarding their weight function and the solution of infinite strip can be utilized in the split-tension specimens when the notch size is very small. In the present work, improved version of LEFM formulas for stress intensity factor, crack mouth opening displacement and crack opening displacement profile presented in the recent research work are incorporated. The results of the double-K fracture parameters obtained using revised procedure and the previous work of the authors is compared. The double-K fracture parameters of split-tension cube specimen are also compared with those obtained for standard three point bend test specimen. The input data required for determining double-K fracture parameters for both the specimen geometries for laboratory size specimens are obtained using well known version of the Fictitious Crack Model.

Metal/ceramic Interface Mechanical Property Analysis (금속/세라믹 계면 물성 분석)

  • Kim, Song-Hee;Kang, Hyung-Suk
    • Journal of Industrial Technology
    • /
    • v.24 no.A
    • /
    • pp.9-15
    • /
    • 2004
  • The flexural strength from 3-point bend test and fatigue properties were measured to evaluate mechanical properties of metal/ceramic interface of the multilayer ceramic package produced through tape casting. From the results, the specimens with three electrode layers showed the highest strength. The temperature distribution with time during thermal cycle and thermal stresses with the change of electrode's shape have been estimated by mathematical modelling. Specimen affected by thermal shock, produced microcracks by the difference of thermal expansion coefficient. The results of tensile test and fatigue test showed the rupture at pin. The fact that the pin brazed specimens were always fractured at the pin proved the good bonding condition between pin and electrode.

  • PDF

High Temperature Creep Behavior of Cr3C2 Composites (크롬-카바이드 복합체의 고온 크리프 거동)

  • 김지환;한동빈;김기태
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.11
    • /
    • pp.1219-1226
    • /
    • 1995
  • Creep behaviors of Cr3C2 composites containing 90 wt% Cr3C2 and 10 wt% Ni were studied at high temperature. Compression tests at 100$0^{\circ}C$ and bending tests at 100$0^{\circ}C$ and 105$0^{\circ}C$ were done in argon environment. In all test conditions primary and steady-state creep behaviors were observed. Stress exponent and activatiion energy were determined from the experimental data. By microstructural analysis of Cr3C2 composites after creep test, the separate agglomerations of Ni phase were observed. Numerical analysis was also studied to analyze bending creep behaviors of Cr3C2 by assumming different tensile and compressive creep behavior in a bending sample. From the analysis, it was found that the stress state at the compressive region as applied stress increased. The observed creep rates were compared with the predicted creep rates by estimating power-law creep parameters from bending test data.

  • PDF

FRACTURE TOUGHNESS CHARACTERISTICS IN HIGH ENERGY DENSITY BEAM WELDED JOINT OF HIGH TENSILE STEELS

  • Ro, Chan-Seung;Yamada, Tomoaki;Mochizuki, Masahito;Ishikawa, Nobuyuki;Bang, Han-Sur;Toyoda, Masao
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.583-588
    • /
    • 2002
  • The purpose of the study is to evaluate fracture toughness on the Laser and the electron beam welded joints of high tensile steels (HT500, HT550, HT650) by using 3-point bend CTOD and Charpy impact test. WM (weld metal) CTOD tests have been carried out using two kinds of CTOD specimen, the Laser beam welding (108mm length, and 24mm width, and 12mm thickness) and the electron beam welding (l71mm length, and 38mm width, and 19mm thickness). WM Charpy impact specimen is a standard V-notch type, and the temperature of the experiment is changed from -45 to 20 degree of centigrade. FE-analysis is also performed in order to investigate the effect of stress-strain fields on fracture characteristics. Results of the standard V-notch Charpy test are influenced by strength mis-match effect and the absorbed energy vE depends on crack path, and The transition temperature of Laser beam welded joints is more higher than that of electron beam welded joints. Results of the 3-point bend test give low critical CTOD and the crack path is in the weld metal of al specimens. These results indicate fracture toughness characteristics of the welded joints and transition temperature of HT500 are similar both a Laser beam welded joint and an electron beam welded joint. But the fracture toughness and the transition temperature of the electron beam welded joints of HT550 and HT650 are higher than those o the Laser beam welded joints.

  • PDF

A COMPARATIVE STUDY ON THE FLEXIBILITY OF THE WROUGHT WIRE CLASPS (가공선 크라스프의 가요성에 관한 비교 연구)

  • Eom, Tae-Wan;Chang, Ik-Tae;Kim, Kwang-Nam
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.27 no.2
    • /
    • pp.261-270
    • /
    • 1989
  • Bend test is one of the methods comparing the physical properties of the clasp wires. The type of bend test used in this investigation was the cantilever loading of a wrought wire. The purpose of this study was to compare the flexibility of a number of commonly used clasp wires, in according to gauge, alloy and heat treatment, under specific condition of load and deflection. Seven noble and one base metal wires were tested under three conditions as follows: (1) as received, (2) quenched (placed in an over at $700^{\circ}C$ for ten minutes and immediately quenched in water at room temperature.), (3) oven cooled (quencned as described, then placed in an oven at $450^{\circ}C$ for two minutes and uniformly slowly cooled to $250^{\circ}C$ in thirty minutes.) The basic test specimen consists of a sample 25 mm in length and 19, 18 gauge in diameter (17 gauge also in two alloys), and the wire was loaded in the form of straight cantilever beams. Force at 0.25 mm (0.01 inch) and 0.5 mm (0.02 inch) deflections for all samples were recorded. The results were as follows ; 1. Ticonium was least flexible and No. 2 was most flexible in according to gauge, alloy and heat treatment. 2. In most of precious wrought wire, the flexibility was increased, but there was no statistically significant differences between as-received and softened condition. 3. There was no statistically differences between as-received and hardened condition. 4. For each alloy, there were statistically significant differences in flexibility due to clasp diameter.

  • PDF