• Title/Summary/Keyword: Benchmark Problem

Search Result 461, Processing Time 0.024 seconds

System identification of a super high-rise building via a stochastic subspace approach

  • Faravelli, Lucia;Ubertini, Filippo;Fuggini, Clemente
    • Smart Structures and Systems
    • /
    • v.7 no.2
    • /
    • pp.133-152
    • /
    • 2011
  • System identification is a fundamental step towards the application of structural health monitoring and damage detection techniques. On this respect, the development of evolved identification strategies is a priority for obtaining reliable and repeatable baseline modal parameters of an undamaged structure to be adopted as references for future structural health assessments. The paper presents the identification of the modal parameters of the Guangzhou New Television Tower, China, using a data-driven stochastic subspace identification (SSI-data) approach complemented with an appropriate automatic mode selection strategy which proved to be successful in previous literature studies. This well-known approach is based on a clustering technique which is adopted to discriminate structural modes from spurious noise ones. The method is applied to the acceleration measurements made available within the task I of the ANCRiSST benchmark problem, which cover 24 hours of continuous monitoring of the structural response under ambient excitation. These records are then subdivided into a convenient number of data sets and the variability of modal parameter estimates with ambient temperature and mean wind velocity are pointed out. Both 10 minutes and 1 hour long records are considered for this purpose. A comparison with finite element model predictions is finally carried out, using the structural matrices provided within the benchmark, in order to check that all the structural modes contained in the considered frequency interval are effectively identified via SSI-data.

On the Reconstruction of Pointwise Power Distributions in a Fuel Assembly From Coarse-Mesh Nodal Calculations (노달계산결과로부터 핵연료 집합체내의 출력분포를 재생하는 방법에 관하여)

  • Jeong, Hun-Young;Cho, Nam-Zin
    • Nuclear Engineering and Technology
    • /
    • v.20 no.3
    • /
    • pp.145-154
    • /
    • 1988
  • This paper is a study on an accurate and computationally efficient method for reconstructing pointwise power distributions from coarse-mesh nodal calculations. The modern nodal codes can calculate global reactor power shapes and criticality very efficiently and accurately. But inherent in the nodal procedures, there is inevitable loss of information on local heterogeneous quantities. In this study, an improved form function method which reflects the exponential transition of the thermal flux near the assembly surface is developed for the reconstruction of the heterogeneous fluxes. Use of the new form function method in several pressurized water reactor (PWR) benchmark problems reduces the maximum errors in the reconstructed thermal flux to those in the reconstructed fast flux. Even for assemblies adjacent to the steel baffle in realistic PWR cores, use of this method also results in improved pointwise power reconstruction.

  • PDF

Improvement of dynamic encoding algorithm for searches (DEAS) using hopping unidirectional search (HUDS)

  • Choi, Seong-Chul;Kim, Nam-Gun;Kim, Jong-Wook;Kim, Sang-Woo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.324-329
    • /
    • 2005
  • Dynamic Encoding Algorithm for Searches (DEAS) which is known as a fast and reliable non-gradient optimization method, was proposed [1]. DEAS reaches local or global optimum with binary strings (or binary matrices for multi-dimensional problem) by iterating the two operations; bisectional search (BSS) and unidirectional search (UDS). BSS increases binary strings by one digit (i.e., 0 or 1), while UDS performs increment or decrement of binary strings in the BSS' result direction with no change of string length. Because the interval of UDS exponentially decreases with increment of bit string length (BSL), DEAS is difficult to escape from local optimum when DEAS falls into local optimum. Therefore, this paper proposes hopping UDS (HUDS) which performs UDS by hopping as many as BSL in the final point of UDS process. HUDS helps to escape from local optimum and enhances a probability searching global optimization. The excellent performance of HUDS will be validated through the well-known benchmark functions.

  • PDF

Exponential Stabilization of a Class of Underactuated Mechanical Systems using Dynamic Surface Control

  • Qaiser, Nadeem;Iqbal, Naeem;Hussain, Amir;Qaiser, Naeem
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.5
    • /
    • pp.547-558
    • /
    • 2007
  • This paper proposes a simpler solution to the stabilization problem of a special class of nonlinear underactuated mechanical systems which includes widely studied benchmark systems like Inertia Wheel Pendulum, TORA and Acrobot. Complex internal dynamics and lack of exact feedback linearizibility of these systems makes design of control law a challenging task. Stabilization of these systems has been achieved using Energy Shaping and damping injection and Backstepping technique. Former results in hybrid or switching architectures that make stability analysis complicated whereas use of backstepping some times requires closed form explicit solutions of highly nonlinear equations resulting from partial feedback linearization. It also exhibits the phenomenon of explosions of terms resulting in a highly complicated control law. Exploiting recently introduced Dynamic Surface Control technique and using control Lyapunov function method, a novel nonlinear controller design is presented as a solution to these problems. The stability of the closed loop system is analyzed by exploiting its two-time scale nature and applying concepts from Singular Perturbation Theory. The design procedure is shown to be simpler and more intuitive than existing designs. Design has been applied to important benchmark systems belonging to the class demonstrating controller design simplicity. Advantages over conventional Energy Shaping and Backstepping controllers are analyzed theoretically and performance is verified using numerical simulations.

Wind and traffic-induced variation of dynamic characteristics of a cable-stayed bridge - benchmark study

  • Park, Jae-Hyung;Huynh, Thanh-Canh;Lee, Kwang-Suk;Kim, Jeong-Tae
    • Smart Structures and Systems
    • /
    • v.17 no.3
    • /
    • pp.491-522
    • /
    • 2016
  • A benchmark problem for modal identification of a cable-stayed bridge was proposed by a research team at Hong Kong Polytechnic University. By taking an instrumented cable-stayed bridge as a test bed, nineteen sets of vibration records with known/unknown excitations were provided to invited researchers. In this paper, the vibration responses of the bridge under a series of excitation conditions are examined to estimate the wind and traffic-induced variations of its dynamic characteristics. Firstly, two output-only experimental modal identification methods are selected. Secondly, the bridge and its monitoring system are described and the nineteen sets of vibration records are analyzed in time-domain and frequency-domain. Excitations sources of blind datasets are predicted based on the analysis of excitation conditions of known datasets. Thirdly, modal parameters are extracted by using the two selected output-only modal identification methods. The identified modal parameters are examined with respect to at least two different conditions such as traffic- and typhoon-induced loadings. Finally, the typhoon-induced effects on dynamic characteristics of the bridge are estimated by analyzing the relationship between the wind velocity and the modal parameters.

Discontinuous finite-element quadrature sets based on icosahedron for the discrete ordinates method

  • Dai, Ni;Zhang, Bin;Chen, Yixue
    • Nuclear Engineering and Technology
    • /
    • v.52 no.6
    • /
    • pp.1137-1147
    • /
    • 2020
  • The discrete ordinates method (SN) is one of the major shielding calculation method, which is suitable for solving deep-penetration transport problems. Our objective is to explore the available quadrature sets and to improve the accuracy in shielding problems involving strong anisotropy. The linear discontinuous finite-element (LDFE) quadrature sets based on the icosahedron (in short, ICLDFE quadrature sets) are developed by defining projected points on the surfaces of the icosahedron. Weights are then introduced in the integration of the discontinuous finite-element basis functions in the relevant angular regions. The multivariate secant method is used to optimize the discrete directions and their corresponding weights. The numerical integration of polynomials in the direction cosines and the Kobayashi benchmark are used to analyze and verify the properties of these new quadrature sets. Results show that the ICLDFE quadrature sets can exactly integrate the zero-order and first-order of the spherical harmonic functions over one-twentieth of the spherical surface. As for the Kobayashi benchmark problem, the maximum relative error between the fifth-order ICLDFE quadrature sets and references is only -0.55%. The ICLDFE quadrature sets provide better integration precision of the spherical harmonic functions in local discrete angle domains and higher accuracy for simple shielding problems.

Visual Object Tracking Fusing CNN and Color Histogram based Tracker and Depth Estimation for Automatic Immersive Audio Mixing

  • Park, Sung-Jun;Islam, Md. Mahbubul;Baek, Joong-Hwan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.3
    • /
    • pp.1121-1141
    • /
    • 2020
  • We propose a robust visual object tracking algorithm fusing a convolutional neural network tracker trained offline from a large number of video repositories and a color histogram based tracker to track objects for mixing immersive audio. Our algorithm addresses the problem of occlusion and large movements of the CNN based GOTURN generic object tracker. The key idea is the offline training of a binary classifier with the color histogram similarity values estimated via both trackers used in this method to opt appropriate tracker for target tracking and update both trackers with the predicted bounding box position of the target to continue tracking. Furthermore, a histogram similarity constraint is applied before updating the trackers to maximize the tracking accuracy. Finally, we compute the depth(z) of the target object by one of the prominent unsupervised monocular depth estimation algorithms to ensure the necessary 3D position of the tracked object to mix the immersive audio into that object. Our proposed algorithm demonstrates about 2% improved accuracy over the outperforming GOTURN algorithm in the existing VOT2014 tracking benchmark. Additionally, our tracker also works well to track multiple objects utilizing the concept of single object tracker but no demonstrations on any MOT benchmark.

HKIB-20000 & HKIB-40075: Hangul Benchmark Collections for Text Categorization Research

  • Kim, Jin-Suk;Choe, Ho-Seop;You, Beom-Jong;Seo, Jeong-Hyun;Lee, Suk-Hoon;Ra, Dong-Yul
    • Journal of Computing Science and Engineering
    • /
    • v.3 no.3
    • /
    • pp.165-180
    • /
    • 2009
  • The HKIB, or Hankookilbo, test collections are two archives of Korean newswire stories manually categorized with semi-hierarchical or hierarchical category taxonomies. The base newswire stories were made available by the Hankook Ilbo (The Korea Daily) for research purposes. At first, Chungnam National University and KISTI collaborated to manually tag 40,075 news stories with categories by semi-hierarchical and balanced three-level classification scheme, where each news story has only one level-3 category (single-labeling). We refer to this original data set as HKIB-40075 test collection. And then Yonsei University and KISTI collaborated to select 20,000 newswire stories from the HKIB-40075 test collection, to rearrange the classification scheme to be fully hierarchical but unbalanced, and to assign one or more categories to each news story (multi-labeling). We refer to this modified data set as HKIB-20000 test collection. We benchmark a k-NN categorization algorithm both on HKIB-20000 and on HKIB-40075, illustrating properties of the collections, providing baseline results for future studies, and suggesting new directions for further research on Korean text categorization problem.

Development of a fast reactor multigroup cross section generation code EXUS-F capable of direct processing of evaluated nuclear data files

  • Lim, Changhyun;Joo, Han Gyu;Yang, Won Sik
    • Nuclear Engineering and Technology
    • /
    • v.50 no.3
    • /
    • pp.340-355
    • /
    • 2018
  • The methods and performance of a fast reactor multigroup cross section (XS) generation code EXUS-F are described that is capable of directly processing Evaluated Nuclear Data File format nuclear data files. RECONR of NJOY is used to generate pointwise XS data, and Doppler broadening is incorporated by the Gauss-Hermite quadrature method. The self-shielding effect is incorporated in the ultrafine group XSs in the resolved and unresolved resonance ranges. Functions to generate scattering transfer matrices and fission spectrum matrices are realized. The extended transport approximation is used in zero-dimensional calculations, whereas the collision probability method and the method of characteristics are used for one-dimensional cylindrical geometry and two-dimensional hexagonal geometry problems, respectively. Verification calculations are performed first for various homogeneous mixtures and cylindrical problems. It is confirmed that the spectrum calculations and the corresponding multigroup XS generations are performed adequately in that the reactivity errors are less than 50 pcm with the McCARD Monte Carlo solutions. The nTRACER core calculations are performed with the EXUS-F-generated 47 group XSs for the two-dimensional Advanced Burner Reactor 1000 benchmark problem. The reactivity error of 160 pcm and the root mean square error of the pin powers of 0.7% indicate that EXUF-F generates properly the broad-group XSs.

Development of One Dimensional Kinetics Program (일차원 동특성 프로그램 개발)

  • Chan Bock Lee;Chang Hyun Chung;Bub Dong Chung
    • Nuclear Engineering and Technology
    • /
    • v.18 no.2
    • /
    • pp.71-77
    • /
    • 1986
  • A one dimensional neutron kinetics program, BIK which is applicable to the safety analyses of PWR's is developed to analyze the reactor core in axial dimension. The BIK employs the finite difference technique in space and $\theta$-time integration method in time. Detailed models for the Doppler and moderator feedbacks and control rod motion are included. The benchmark of the nuclear model is carried out through the ANL benchmark problem and the time dependent nuclear power change in the rod ejection accident of KNU1 is calculated by BIK code. The results indicate that the BIK can predict the neutron dynamics with fair accuracy within the limits of one dimensional analysis and it is useful for the safety analyses of PWR's.

  • PDF