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Abstract

This paper is a study on an accurate and computationally efficient method for reconstruct-
ing pointwise power distributions from coarse-mesh nodal calculations. The modern nodal
codes can calculate global reactor power shapes and criticality very efficiently and accurately.
But inherent in the nodal procedures, there is inevitable loss of information on local heter-
ogeneous quantities. In this study, an improved form function method which reflects the ex-
ponential transition of the thermal flux near the assembl§ surface is developed for the recon-
struction of the heterogeneous fluxes. Use of the new form function method in several pressu-
rized water reactor (PWR) benchmark problems reduces the maximum errors in the recon-
structed thermal flux to those in the reconstructed fast flux. Even for assemblies adjacent to
the steel baffle in realistic PWR cores, use of this method also results in improved pointwise

power reconstruction.
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1. Introduction

The neutronics design and safety analysis of a
modern nuclear reactor require extensive know-
ledge of the power produced in the reactor core
during both steady-state and transient operations.
The ability to calculate power distributions in a
nuclear reactor core depends critically on models
used to predict the neutron density in space,
direction, energy, and time. Fine-mesh finite dif-
ference methods for the neutron diffusion equa-
tion have been used for calculation of the power
distributions in a reactor core.V Unfortunately, be-
cause a large number of spatial mesh volumes are
required for accurate solution of the finite-differ-
enced diffusion equation, these methods are quite
inefficient.

In the nodal methods, the reactor core is parti-
(typically,

homogeneous nodes, and as the unknowns, node
2.3)

tioned into large assembly  size)

averaged fluxes and surface averaged currents,

and assembly average powers are directly

obtained from the converged nodal solutions. Pro-
vided that

which are generated from heterogeneous assem-

accurate homogenized parameters

bly calculations? can be determined in a node,
modern nodal codes are capable of accurately
predicting global reactor power shapes, criticality,
critical control rod patterns, etc. However, a major
drawback of the nodal methods inherent in the
homogenization procedures and the nodal scheme
itself is the loss of information on local heter-
ogeneous quantities.” One is usually interested in
local details at specific points or certain regions of
the reactor, for instance, in the position and value
of local pin power peaks in regions of high power
density or detailed pin power distributions for
some assemblies that are of particular interest.
Two basic approaches to the flux and power re-
construction from the nodal calculations were tre-
ated in the literature.> ? These approaches are the

imbedded assembly calculation method and the
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approximgte form function method. Although the
imbedded ‘assembly calculations can yield accurate
reconstruction results, they are relatively expensive
to implement, since they rely on auxiliary
fine-mesh calculations for the node of interest. In
the form function method, heterogeneous fluxes in
each node are reconstructed by combining various
modes of form functions with the assembly heter-
ogeneous flux which is saved from the assembly
calculation. The nineterm bi-quadratic form func-
tion method”® is most satisfactory of all form
function methods from a point of view of accuracy
and efficiency. However, this method approxi-
mates flux distributions poorly in an assembly-size
node, specially thermal flux. In determining point-
wise power distributions, it is important to recon-
struct thermal flux more accurately than fast flux,
since most fission power in a thermal reactor is
produced by thermal fissions.

In this paper, efficient form function methods
are investigated for the pointwise power recon-
struction. An improved form function method!?
whose reconstruction error of the thermal flux is
roughly that of the fast flux is described, and its re-
construction results are compared with those of

the bi-quadratic form function method.

2. Modem Nodal Theory and Equivalent Assem-
bly Homogenization

2.1. Modern Nodal Theory
It is assumed that two-group cross sections are
spatially constant in each node and that the values
of these constants are provided by the methods
described in the Then, the

three-dimensional static multigroup neutron diffu-

next section.

sion equation is

T+ 30+ S glr)
=75 [Z gD+ v Sl 8570
= 2 B vEwlnl 4 g0

Jgom(r)= —Dylr) - 8 SPo™r);
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g=1,.,.,.,G.

Integration of equation (2-1) over the volume of
node N(N=1,...,N_,.) vields

hythN[‘jng,hom(xi . 1) _Jng,hom(Xi)]
+ thth‘ng\#’hom(yi+ 1) _JgNy'hom(yi)]
+ "y Moy 2 1) —Jgn™ " 2K)]

- G -
+VWSnbgm =V Z [Seen

hom

Xg _ _
+g vSeNl $ gn

where

g

J Nu,hom(ul) _ ; Nlh - f”m+ldv
jw"*l dwi - :]gh"m(ul,v,w);

u=x,y,z, w#FEv£U
I=ijk I#£m=#n
S aoN= 2= aglxy,2) | x € [x;, x)]
lvely, vl
| z € [z, z+1]; a =ta,gg.f

¢ gNhom:% J:,N dv¢ ghom(;)

Np Np N N
W=h N NhN=x 1 —x,
N N
hy =Yis1—Y hy =2k 1— 2

Equation (2-3) is called the nodal balance equa-
tion. The utility of this equation is limited by the
fact that without additional relationships between
the face-averaged currents ~gN“‘h°'"(ul) and the
node-averaged fluxes ¢ o™ the spatial flux dis-
tribution cannot be determined. The required rela-
tionships are called the spatial coupling equations,
and in the modern nodal theory these equations
are derived by integrating the diffusion equation
over the directions transverse to the direction of
interest. This vields for the direction u(=x,y,z) and
node N,

B a'_’ u,hom < uhom
*DgwiﬁgN hom(u)+ SN P gN hom(y)
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e *g S u,hom
N g.z; [Zggnt ke;f v SN $gn hom(y)

= - gN(U)

wvhere
¢ u[,\?om (u)_ 717 f”m+ldu
he =
RN Jon

f“’n + ldw ¢ ghom(u’l}’ LU)

Wn

is the one-dimensional flux in group g and in

direction u for node N, and

_ Dy . w
Sonte) == 5, j:"’”dv fw"“dw
Eh h DQN v
Y ¢ om(u’u,w)_i 3N _fm+1d
av? ¢ neN Jon P
2

i aa 4 mMupw)  (25)
Wn w

is called the transverse leakage term which repre-

sents the neutron leakage transverse to the direc-

tion u.
Note that
1
h o fl’JI+ ldu é gNu,hom(u): é gNhom(u) (2.6)
3 o u,hom __ 1 uhom
—Dgl\ha ¢gN oM (u) ‘uful :JgN Hemul)  (2.7)
Thus, if the one-dimensional flux ¢gN“'h°"'(u) is

known, the relationships between the node-aver-
aged fluxes and the surface-averaged currents can
be obtained. Various modern nodal methods are
distinguished from one another by the way to
treat the spatial coupling equations. In this study,
the ANM nodal code!” which is based on the
analytic nodal method'? is used in oder to obtain
nodal solutions.
2.2. Equivalent Assembly Homogenization

In order to apply nodal methods to reactor

analysis, the heterogeneous assemblies must be

homogenized. The most commonly used proce-
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dure to determine the homogenized prameters in
each assembly is the assembly calculation method.
In this method, a relatively inexpensive heter-
ogeneous assembly eigenvalue calculation is per-
formed using the zero-net-current boundary con-
dition to yield a heterogeneous assembly flux Ag(;)
for each unique type of assemblies. Then the con-
ventional flux-volume weigting method is applied

with this heterogeneous assembly flux:

_ Javs . 0o
S N = [V A2 (2.8)
L [ndVDynAr) 09
D= [endV Ag(r) 29)

These assembly homogenized parameters are de-
signated as assembly homogenized cross sections
(AXS). Smith? introduced discontinuity factors in
order to correct the discontinuity of the sur-
face-averaged homogeneous flux at the node in-
terface. Smith’s assembly discontinuity factor-
s(ADF) are

Au(ul+1)
ADF = o0 (2.10)
A'gi\) (ul+1)
_ Agtul
ADFN"" = —rem 2.11
g Ag{\l‘%m(u[) (2.11)

Then continuity condition for the heterogeneous

surface-averaged flux is expressed as

ADFgNu+ . AgNu.hom(u’+l):ADnguf . Agku,hom

(U +1)

where the u+ surface of the node N is corres-
ponds to the u-surface of the node K. The
homogeneous flux from a homogeneous assembly
calculation with the zero-net-current boundary

condition is spatially flat and thus

A Lh A ,h A h
AgNu om(ul):AgNu Om(ul+]):AgN om _ N

™ and A,y are the assembly-volume

where AgN"O
averages of the homogeneous and heterogeneous
assembly fluxes, respectively. Thus, when assem-

bly calculations are based on zero-net-current
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boundary conditions, the ADF can also be ex-

pressed as
u A;N (up41)
ADF "t = A&i (2.12)
g
Ay ()
ADFgN“’=~3NA : (2.13)

3. Reconstruction of Pointwise Power Distribu-

tions

The reconstruction of heterogeneous fluxes and
power distributions from the nodal solution is
especially appealing because these detailed dis-
tributions can be obtained separately from the
evaluation of global and node-averaged quanti-
ties. The detailed information is computed only
when and where desired,” after nodal calculations
are executed.

So far two independent methods have been de-
veloped for the reconstruction problem. The more
accurate and expensive method of these two is
the imbedded heterogeneous assembly calculation
method.>® Basic approach to this method is to
derive accurate boundary conditions at the node
surfaces directly from the converged nodal solu-
tion and then to solve an assembly source prob-
lem with these boundary conditions. The second
approach to flux reconstruction is the various form
function methods, including the modulation
method,” FORTE method,” and bi-quadratic
form function method.® The essence of the form
function methods is to search for a form function,
F4lx,y), that multiplicatively corrects the assembly
flux, Aglx.v), such that the product Aglx, y)XFg(x,y)
reconstructs the heterogeneous flux, ¢ 4x,y), with-

in an assembly:

$ 406 v) =Agx V)XFglx,p). 3.1)

That is, the assembly flux reflects local heter-
ogeneities within an assembly and the form func-

tion represents smooth flux distribution in the
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global core. In contrast to the imbedded assembly
calculation method, since the Aglx,y) are needed
in the first place to determine the homogenized
nodal parameters, reconstruction can be per-
formed at a little additional cost without any au-
xiliary fine-mesh calculation. Because of its grea-
ter computational efficiency, only the form func-
tion methods are investigated in this paper.
3.1. Bi-quadratic Form Function Method

In this method, the form function of the group
flux is approximated by a nine-term bi-quadratic
polynomial, i.e.,

polxy) 2 2 v

X ymi Y \n
Fg(x7y)27qg@))~m§] nzoam,ng(gh:) ( hy " (3.2)

The nine coefficients a,, ,, for each group are de-
termined by the requirement that the recon-
structed flux 8 50x,v) =A4lx,u)XF4(x,y) vield the cor-
rect values of the nine flux-related quantities:

i) The node-volume averaged flux,
ii} The node-surface averaged fluxes, s=1,...,4,

iii) The corner-point fluxes, c=1,...,4.

Here the corner-point fluxes are interpolated
values by using the node-surface averaged fluxes.
In this paper, the CAMPANA method” is adopted
for the comer-point flux interpolation. Fig. 1 illus-
trates the coordinate system and the various flux
information used to evaluate the a,, ., The re-
quirements that Ag{x,y)XF,(x,y) match the nine flux
values are as follows.

$o= g Jot o e - P, 63
8= Joaun 0 - Fiog) 34
= p I domgthu) - Fyfho) 35)
$ gszfgxf JodxAx,0) - Fofx,0), (3.6)
4 ;‘:hix Jodxa 0 hy) - Fychy), 3.7)
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Fig. 1. Coordinate System and Flux Informa-
tion Used for Flux Reconstruction

$ 41 =A4(0,0) - F,(0,0) (3.8)
$ o* =Ag(h,,0) - Fy(h,,0) (3.9)
$ o> =Aglhyhy) « Folhyhy) (3.10)
$ ¢*=Ag0,h,) - F4(0,h,) (3.11)

Equations (3.3) through (3.11) can be written in

matrix form as

Bgllamng = (¢4 {3.12)

and this system of equations can easily be solved
directly.
3.2. Improved Form Function Method

Applications of the bi-quadratic form function
method to heterogeneous flux reconstruction
show that although reconstruction results of the
fast flux are satisfactory, results of the thermal flux
are not as good as those of the fast flux.” These
results imply that the form function for the fast flux
is well fitted by a polynomial function, but not for
the thermal flux.

This is explained as follows. The slowing down
density of the fast neutrons in the interior of a

homogeneous medium is proportional to the fast
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13 and thus the theral neutron flux

neutron density,
is proportional to the fast neutron flux. But near
the interface of the distinct types of material, the
neutron spectrum is affected by the material and
spectral interaction. Because the mean free path
of the thermal neutrons is very short and that of
the fast neutrons is relatively long, comparable to
the assembly size, the thermal neutron flux dis-
tributions may change drastically while the fast
neutron distributions may not. Therefore, the ratio
of the thermal flux to the fast flux would show
exponential transitions near the assembly inter-
face.

Based on the Koebke’s spectral interpolation
scheme? for a homogeneous reactor, an im-
proved form function method is developed in this
study for the reconstruction of the heterogeneous
flux. In this method, the bi-quadratic form func-
tion method is adopted for the reconstruction of
the fast flux,

2 2 x

Filey) = 3, 3 amal "),

m 0 n.-.0 I }7y

3.13)

while for the reconstruction of the thermal flux, a
group dependent form function is used in the fol-

lowing form
Folx,y) ]
Filxy) =3 ’EOC,-,,-G,-(x)Gj(y) (3.149)
where
Golt) = 1
1t} = cos L,
Gaolth = sinh(-1), t=x,p
L,
and
D,
L, =/—"—

202

Here D and 3, are homogenized values. If
Filx,y) is precalculated, the nine coefficients of
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Fig. 2. Heterogeneous PWR Assembly Geometry

Fy(x,y) can be determined by the previous proce-
dure, Eq. (3.3) through Eq. (3.12), and then the

thermal flux is reconstructed as

$2x9) = Aglxy) - Fibeyll S, %0, GG,

4. Applications and Discussions

The accuracy of the new form function method
for pointwise flux and power reconstruction is
tested on several PWR benchmark problems de-
scribed in Figures 2 through 5 and Table 1. All
reconstruction results are compared with those of
the bi-quadratic form function method. For this
prupose, ANM calculations using AXS/ADF were
performed with 2X2 nodes per asembly. Howev-
er, reconstruction of the pointwise quantities was
over one node per assembly, since an objective, of
this study is to develop an efficient reconstruction
scheme with one node per assembly. Since the
difference between the bi-quadratic form function
method and the new form function method de-
veloped in this study is only the reconstruction
scheme for the thermal flux, pointwise thermal
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Ji=0
F-2 F- F-2
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Fig. 3. Benchmark Problem 1
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Fig. 4. Benchmark Problem 2

flux reconstruction results are compared at first
and then pointwise power reconstruction results

are presented. The pointwise power is obtained as

Pley) = 3 k3 0c) # gbcy)

where k(=3.3X10"!' Ws) is energy release per
fission. The global reference solutions are from the
fine-mesh (2X2 mesh per each pin-cell, i.e., a
mesh size of 0.7 cm) KIDD' runs.

Table 2 presents the flux and power reconstruc-
tion results for the center node of Benchmark
Problems 1 and 2. Benchmark Problem 1 is de-

$=0
I
18.2¢cm Baffle
J Water
T Reflector
2.8cm F -1 F -1
(W) (W)
. $=0
A=) e o L P | R
W) (W) )
F-2 F-2 F-1
(CR2) (W) (W)
Ji=0

Fig. 5. Benchmark Problem 3

signed to simulate the reactor core containing
control rods, and Benchmark Problem 2 is de-
signed to represent the effect of flux tilt. Table 2
shows that when the bi-quadratic form function
method is used for the reconstruction, the recon-
struction results for the fast flux are good but not
for the thermal flux and the pointwise power. On
the other hand, when the new method is used, we
get significantly improved reconstruction results. In
the new method, the error of the reconstructed
thermal flux and pointwise power is similar to that
of the reconstructed fast flux.

The new reconstruction method is also tested
with Benchmark Problem 3 which is a more
realistic PWR problem. This problem contains a
rodded assembly, steel-baffle, and water reflector.
Reconstruction results for Benchmark Problem 3
are presented in Figs. 6 and 7. In this problem,
relatively large errors arise in the rodded assembly
and assemblies adjacent to the steel-baffle. For
the rodded assembly, somewhat unsatisfactory re-
sults are mainly from the irregular flux distributions
in the interior of the assembly caused by control
rods. For assemblies adjacent to the baffle, the
maximum error in reconstruction of the thermal
flux is -17.3% with the bi-quadratic method. This

large error is due to the steel-baffle and water
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Table 1. Heterogeneous, Pin-cell Two-group Cross Section Data for Benchmark Problems

Cross- Fuel Fuel Fuel Fuel Control Control " Steel
Section 8 1 2 3 4 Rod 1 Rod 2 ater Baffle
D, 1 1500 1.500 1.500 1.500 1.1133 1.1133 1.700  1.020
{cm) 2 0400 0.400 0.400 0.400 0.18401 0.18401 0350 0335
S e 1 0.020 0.020 0.020 0.020 0.037529 0.0037529 0.035 0.0
(em™) 2 00 0.0 0.0 0.0 0.0 0.0 0.0 0.0
S ag 1 0.013 0.010 0.010 0.011 0.049890 0.0836661 0.001  0.00322
(em™1) 2 0.180 0.15 0.160 -0.190 0.96726 0.96726 0.05 0.146
V3 1 0.0065 0.005 0.0065 0.0055 0.0 0.0 0.0 0.0
(cm™Y) 2 0.240 0.180 0.240 0.2100 0.0 0.0 0.0 0.0
k3 1 8850E-14 6.600E-14 8.850E-14 7.260E-14 0.0 0.0 0.0 0.0
(Ws/ecm) 2 3.168E-12 2.376E-12 3.168E-12 2.772E-12 0.0 0.0 0.0 0.0
Table 2. Reconstruction Results for The Center Node
of Benchmark Problems 1 and 2 Average Error
/ Maximum Error
Benchmark Method Average Maximum / i
Problem etho Error Error T 7
fast —— 0.92%  2.69% | 0.70% -3.60%
Fast 1 Bi-quadratic 0.25% 0.92%
Flux Bi-quadratic 0.53% —2.01% thermal {3.90% -9.83% | 4.79% -17.3%
Al ~TN0.72% 2.13% | 1.05%  8.89%
Bi-uadratic 2.88% 8.13%
1 New  047%  1.50% I
Thermal
Flux 2 Bi-quadratic 2.57% —8.32% 0.41% 0.99% | 0.28% 1.12%
New 059% —1.70%
a) —L | 96% -6.23% | 2.59% -8.17%
1 Bi—quadratic 2.49% 7.09% b) 1 0.87% 2.38% 0.23% -1.18%
New 0.43% 1.67%
Power
2 Bi-quadratic 2.17% —7.02% L12% 3. 45%
Lo 0
New 057% —1.75% 2)Bi-quadratic
Note: Pointwise error at(ij) =E;; = (cal.-ref)/ref. X 4.70%  11.2% b)New
100% 2.25% 8.64%
Maximum error = Max(E;))

Average error = 3, | E;; | /Total number of points

reflector. On approaching the steel-baffle, the
thermal flux changes rapidly. Thus the bi-quadra-
tic method cannot represent this effect adequately,
resulting in large errors. In applying the new
method, these large errors are reduced to 8.9%
from-17.3% in the thermal flux reconstruction
and to 7.0% from-14.2% in the pointwise power

reconstruction.

Fig. 6. Pointwise Flux Reconstruction Results for Ben-
chmark Problem 3

5. Summary

An improved form function method for recon-
struction of pointwise flux and power from
coarse-mesh nodal calculations has been de-

veloped in this study. In contrast to the conven-
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Average Error
} Maximum Error
| /[
a) —+3.03% -7.67% | 3.85% -14.2%
b) —+0.72% 2.13% 0.92% 6.96%
1.62% -5.23% 2.07 -6.32%
0.77% 2.01% 0.23% -0.73%
3.88% 9.16% ) .
a)Bi-quadratic
1.97%  7.29% b)New
Fig. 7. Pointwise Power Reconstruction Results for

Benchmark Problem 3

tional polynomial form function method, the new
method uses hyperbolic form function for the ther-
mal flux to represent exponential transition be-
havior near the assembly interface and treats the
form function of the thermal flux not independent-
ly of the form function of the fast flux. The new
method led to large error reduction in the recon-
structed thermal flux, and showed similar error re-
duction in the reconstructed pointwise power.
Thus the new form function method is able to
reconstruct all heterogeneous quantities efficiently
and satisfactorily, provided that accurate coarse-

mesh nodal solutions are obtained.
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