• Title/Summary/Keyword: Bench-scale

Search Result 353, Processing Time 0.026 seconds

Methodology Development for the Reuse of Sludge Generated from Fenton's Oxidation Process (펜톤산화 공정에서 발생하는 슬러지의 재활용 방안)

  • Koo, Tai-Wan;Cho, Soon-Haing;Choi, Young-Soo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.6
    • /
    • pp.1083-1091
    • /
    • 2000
  • The objective of this study is to develop effective and economical treatment processes for the removal of non-biodegradable organics by reusing the sludge generated from Fenton's Oxidation Process. It was found that about 50% of coagulants and 50% of catalyst can be reduced by reusing the sludge generated from Fenton's Oxidation Process. It was also found that the amount of sludge generation can be reduced in coagulation process and Fenton's Oxidation Process. From the results of bench-scale test, it was found that the average removal efficiency increased to 8.5% and the amount of sludge generation was reduced up to 35% by reusing the sludge as coagulant. The average organic removal efficiency increased to 5.3% and the amount of sludge generation was reduced up to 14% by reusing the sludge as catalyst in Fenton's Oxidation. It can be concluded that the reuse of sludge generated from Fenton's Oxidation Process would be reduced cost of chemical consumption and Fenton's sludge treatment.

  • PDF

A Study on the Removal of Fluorine from Leachate of Reclaimed Mine Waste Dump Site Using Alum Coagulation (알럼 응집을 이용한 광산폐기물 적치장 침출수 내 불소 제거 연구)

  • Sang-Woo Lee;Woo-Chun Lee;Seong Hee Kim;Sang Heon Jeong;Bo Young Lee;Sang-Hwan Lee;Soon-Oh Kim
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.36 no.1
    • /
    • pp.19-32
    • /
    • 2023
  • This study was conducted to remove fluorine (F) (initial concentration of 9.5 mg/L) from leachate of reclaimed mine waste dump site via different methods: (1) co-precipitation using Ca-based materials; (2) adsorption using activated carbon and fly ash; and (3) coagulation and sedimentation using alum. The F removal efficiencies of each case were estimated as 65.6% (Ca co-precipitation), 27.9% (adsorption of activated carbon), 71.5% (adsorption of fly ash), and 96.6% (alum coagulation and sedimentation). In addition, the applicability of the continuous treatment process using alum coagulation was evaluated by lab-scale experiments using simulated mine drainage containing F of lower (6.4 mg/L) and higher (15.7 mg/L) concentrations, and it was confirmed that the treatment of both cases met the domestic standard (below 3 mg/L) for discharged water in clean areas. Furthermore, the results of bench-scale field tests indicated that the water quality standard of discharged water could be satisfied with the proper operation and management of the process.

Effect of Recycled-Water Addition on Treatment Efficiency of Coal Tar-Contaminated Soil with Slurry Phase Bioreactor (콜타르 오염토양의 슬러리상 생물반응기에서 처리수 재순환에 따른 효율 평가)

  • Park, Joon-Seok;Park, Jin-Hong;Namkoong, Wan
    • Applied Chemistry for Engineering
    • /
    • v.16 no.5
    • /
    • pp.712-718
    • /
    • 2005
  • This research was conducted to evaluate the effect of recycled-water addition on the treatment of coar tar-contaminated soil with slurry phase bioreactor. A bench-scale slurry phase bioreactor was maintained to optimize the microbial growth. Silty loam soil was used for this research. Concentrations of coal tar and 14 target PAHs (Polyunclear Aromatic Hydrocarbons) in the soil were determined with gas chromatography. Addition of recycled-water to slurry phase bioreactor was not significantly increased the removal efficiency of 2000 mg coar tar/kg. However, it significantly increased the removal efficiency of 20000 mg coar tar/kg. In 20000 mg coar tar/kg, the first order kinetic constant and the removal efficiency of the reactor with recycled-water addition were 2.5 and 2.0 times higher than those of the reactor without recycled- water addition. Coar tar in the slurry phase bioreactor was removed in 3.8~16.0% by vaporization and biodegraded in 84.0~96.2%. Removal efficiency of 3-ring compounds was high as 92.2~99.7% in the case of recycled-water addition. However, removal efficiencies of 3 and 4-ring compounds were low as 0~30%.

A Case Study on the Application of Vibration Level Units in the Construction Phase (시공단계의 진동레벨 단위적용에 관한 사례 연구)

  • Choi, Hyung-Bin;Kim, Dong-Yeon
    • Explosives and Blasting
    • /
    • v.30 no.2
    • /
    • pp.86-97
    • /
    • 2012
  • Ground vibration induced by a bench blasting in the construction site should cause the damage to the structure and indirect damage to a human body, and the vibration level is most practical descriptor for regulating the damage to human body and peak particle velocity is the descriptor for direct damage assesment of the structure. Meantime, the vibration level has not been considered for the blasting design but this study is the case that apply not only peak particle velocity but also vibration level on the blasting design. Also, we strongly believe that this study will be helpful for the management in the blasting site which some civil appeal is concerned. Total 232 measurements of both ppv and vibration level was used to estimate the scale distance. When the regulating threshold was ppv 0.3 cm/s and vibration level 75 decibel, the charge per delay to be estimated with vibration level could be recommended by 1.2~1.4 times than it of ppv. So, it is proven that considering vibration level on the blasting design is reasonable for not only prevention of the civil appeals but also effective blasting. Again, the blasting design which follows the law, "Noise and Vibration Control Act" can actually serve good condition to carry much more economical and effective blasting. The instruments used for this study are the SV-1 model, as first instrument in korea which can measure vibration velocity and vibration level at the same time.

Temperature Effects on Type and Concentration of Substrate in Activated Sludge Process (활성(活性)슬러지공법(工法)에 있어서 유기물(有機物)의 성상(性狀)과 농도(濃度)에 따른 온도영향(溫度影響))

  • Choi, Eui So;Min, Kyung Sok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.5 no.4
    • /
    • pp.45-56
    • /
    • 1985
  • This study was made to evaluate temperature effects on biological wastewater treatment particularly at the lower temperatures. Cell yield coefficients and other kinetic factors were compared by varying temperature for industrial wastes. Bench scale aeration-only complete mixing activated sludge(CMAS) units were operated at temperatures of $1^{\circ}$, $4^{\circ}$, $7^{\circ}$ and $10^{\circ}C$ with substrate concentrations of 5,000 and 200 mg/l COD. The study results indicate that the cell yields were computed to be 0.5 to 0.6 grams VSS per grams BOD removed, and were not influenced by temperature variations. The synthesis/total energy ratios were computed to be 0.45 to 0.58 and had a tendency to become larger at lower temperatures. The endogenous respiration rates were computed to be 0.07 to 0.08/day, and seemed to be independent of temperature. In addition, very little temperature effects were observed when F/M ratio and substrate concentrations were reduced.

  • PDF

An Assessment on the Behavior of Nitrogenous Materials during the First High-rate Phase in Composting Process (퇴비화 공정의 1차 발효단계에서 질소성 물질의 거동 평가)

  • Jeong, Yeon-Koo;Kim, Jin-Soo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.8 no.3
    • /
    • pp.81-88
    • /
    • 2000
  • Composting of N-rich wastes such as food waste and wastewater sludges can be associated loss of with substantial gaseous N, which means loss of an essential plant nutrient but may also lead to environmental pollution. We investigated the behavior of nitrogenous materials during the first high-rate phase in composting of food waste. Air dried food waste was mixed with shredded waste paper or wood chip and reacted in a bench scale composting reactor. Samples were analyzed for pH, ammonia, oxidized nitrogen and organic nitrogen. The volatilized ammonia nitrogen was also analyzed using sulfuric acid as an absorbent solution. Initial progress of composting reaction greatly influenced the ammonification of organic nitrogen. A well-balanced composting reaction with an addition of active compost as an inoculum resulted in the promoted mineralization of organic nitrogen and volatilization of ammonia. The prolongation of initial low pH period delayed the production of ammonia. It was also found that nitrogen loss was highly dependent on the air flow supplied. With an increase in input air flow, the loss of nitrogen as an ammonia also increased, resulted in substantial reduction of ammonia content in compost. The conversion ratio of initial nitrogen into ammonia was in the range of 28 to 38% and about 77~94% of the ammonia produced was escaped as a gas. Material balance on the nitrogenous materials was demonstrated to provide an information of importance on the behavior of nitrogen in composting reaction.

  • PDF

Effect of Operational Parameters on the Ammonia Stripping (암모니아 스트리핑에 미치는 운전인자의 영향)

  • Seo, Jeong-Beom;An, Kwang-Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.9
    • /
    • pp.935-939
    • /
    • 2006
  • The biological nutrient removal from domestic wastewater with low C/N ratio is difficult. Therefore, this study was performed to examine effect of operational parameters such as air supply, hydraulic retention time, pH on the nitrogen removal by ammonia stripping and to increase influent C/N ratio without required carbon source. The ammonia stripping system used for the bench-scale experiment in laboratory had a dimension of 15 cm diameter and 150 cm height. The ammonia stripping reactors were classified into two types, type AS I and type AS II, according to there using or not media. Results of the research showed that the T-N removal efficiency of AS I using plastic media is slightly higher than AS II without media. In experimental condition of air supply 30 L/min and pH 12.5, T-N removal efficiencies increased as HRT of ammonia stripping reactor became longer from 8 hr to 36 hr. In experimental condition of HRT 36 hr, it was also found that the T-N removal efficiencies improved through increase of air supply. On the other hand, C/N ratio of wastewater was increased from average 3.9 to 5.4 by ammonia stripping.

Effect of Hydrogen Sulfide Removal by Biofilter Seeded with Pseudomonas putida B2 (Pseudomonas putida B2가 접종된 Biofilter의 황화수소제거 효과)

  • Yoon, Ji-Yong;Lee, Soo-Choul;Kwon, Il;Sung, Chang-Keun
    • KSBB Journal
    • /
    • v.16 no.3
    • /
    • pp.286-289
    • /
    • 2001
  • A beterotrophic Pseudomonas putida B2 was used to treat of hydrogen sulfide containing gas. The experimental approach involved operating two indentical bench-scale biofilters with media consisting of a mixture of peatmoss, perlite and granular activated carbon(GAC). One column was seeded with Pseudomonas putida B2 and the other was left unseeded. The biofilter was operated for 16 days under EBRT for 20-40 sec, at a temperature of 25-30$^{\circ}C$ and a hydrogen sulfide concentration of 40-190 ppm. The biofilter inocculated with P.putida B2 exhibited high hydrogen sulfide removal efficiency, average of 95%, at a gydrogen sulfide concentration of 40-190 ppm (flow rate 3.6 L/min). However, at a shock loading of 190 ppm the biofiter showed a removal efficiency of 78.9% and the control only showed a removal efficiency of 31.6%. The critical load of this biofilter was 14.83 g/㎥hr, and the critical load of the control column was 4.93 g/㎥hr. These results suggest that P. putida B2 has the potential to be used as a $H_2S$ removal agent in a biofilter.

  • PDF

Reduction of Hexavalent Chromium by Leachate Microorganisms in a Continuous Suspended Growth Culture (연속배양 체제에서의 침출수 미생물에 의한 6가 크롬이온의 환원)

  • Kim, Hyoun-Young;Oh, Young-Sook;Kim, Yeong-Kwan;Choi, Sung-Chan
    • Korean Journal of Microbiology
    • /
    • v.34 no.3
    • /
    • pp.126-131
    • /
    • 1998
  • Reduction of hexavalent chromium to its trivalent form by leachate microorganisms was studied in batch and bench-scale continuous stirred tank reactor. The inoculum was a culture of microorganisms in leachate and capable of providing up to 90% chromate reduction during 72 h batch assay with $20mg\;Cr(VI)\;L^{-1}$ in minimal media containing different levels of leachate (10 to 60%) and glucose (50 to 200 mM). Addition of glucose increased the efficiency of chromate reduction, but adverse effect was observed with increase of leachate probably due to the competitive inhibition between chromate and sulfate ions. The continuous culture experiment was conducted for 124 days using synthetic feed containing different levels of chromate (5 to $65mg\;L^{-1}$) at room temperature. With a hydraulic retention time of 36 h, chromate reduction efficiency was mostly 100% when Cr(VI) concentrations in the reactor were in the range of 5 to $50mg\;L^{-1}$ Specific rate of Cr(VI) removal was calculated as $3.492mg\;g^{-1}\;protein\;h^{-1}$ during the period of 101~124 days from the start-up which showed 81.2% of average reduction efficiency. The results indicate the potential application of using leachate microorganisms for detoxification of hexavalent chromium in various chromium-contaminated wastewater from landfill or tannery sites.

  • PDF

Change of Chemical and Microbial Properties during Fermentation of Cotton Waste for Oyster Mushroom Cultivation (느타리 재배용 폐면 발효 중의 화학성 및 미생물 상의 변화)

  • Jhune, Chang-Sung;Jang, Kap-Yeul;Cho, Soo-Muk;Oh, Se-Jong;Park, Jung-Sik;Weon, Hang-Yeon
    • The Korean Journal of Mycology
    • /
    • v.32 no.2
    • /
    • pp.105-111
    • /
    • 2004
  • The changes of microflora and chemical characteristics during fermentation process of cotton waste for oyster mushroom cultivation were investigated with 5 l bench-scale reactors placed in an incubator at different temperatures ($40,\;50\;and\;60^{\circ}C$). Cotton waste was wetted to 70% moisture, and air flow rates to the substrate were 50, 100 and 300 cc/min. In processing of composting, the mesophilic bacterial population decreased sharply but thermophilic bacterial population increased. In case of fungi, both mesophilic and thermophilic population decreased. The daily $CO_2$ evolution showed little difference in all treatments, while $NH_3$ dropped sharply after 3 days. The desirable composting temperature and air flow based on the mycelial growth of oyster mushroom were $50^{\circ}C$ and 100 cc/min, respectively.