• Title/Summary/Keyword: BeiDou

Search Result 32, Processing Time 0.023 seconds

A Study on Status of Multi-GNSS Constellation and Its Positioning Performance on SPP mode (다중 GNSS 구축현황 및 표준절대측위 성능에 관한 연구)

  • Yun, Seonghyeon;Lee, Hungkyu;Dinh, Huy Nguyen
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.8
    • /
    • pp.662-673
    • /
    • 2019
  • This paper investigates the most recent status of multi-GNSS, including technical features, types of ranging signals provided, and satellite constellation. Furthermore, a series of multi-GNSS positioning experiments in SPP mode were carried out to assess the achievable accuracy and continuity with an application to various positioning scenarios. A week of GNSS measurements each in 2018 and 2019 was acquired from the national geographical information institute and processed. The results show that a single GNSS-based scenario often encounters positioning blockage in the harsh operational environment, while multi-constellation cases are able to remedy this situation. The accuracy of multi-GNSS with a combination of GPS and Galileo is superior to that of other GNSS compositions due to the larger SISRE (Signal In Space Ranging Errors) of GLONASS and Beidou. Due to the different characteristics of GNSS SISRE, an issue has been raised to optimally integrate satellite measurements to maximize accuracy of multi-GNSS positioning.

Performance Analysis of Multi-GNSS Positioning Accuracy with Code Pseudorange of Dual-Frequency Android Smartphone in Maritime Environment (안드로이드 스마트폰의 이중 주파수 GNSS 의사거리 기반 해상 측위정확도 성능 분석)

  • Seo, Kiyeol;Kim, Youngki;Jeon, Tae-Hyeong;Son, Pyo-Woong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.11
    • /
    • pp.1588-1595
    • /
    • 2021
  • Android-based smartphones receive the global navigation satellite system (GNSS) signals to determine their location and provide the GNSS raw measurement to users. The available GNSS signals on the current Android devices are GPS, GLONASS, Galileo, BeiDou, QZSS. This research has analyzed the performance of multi-GNSS position accuracy based on the pseudorange of the smartphone for maritime users. Smartphones capable of receiving dual-frequency are installed on a ship, and multi-GNSS raw information in maritime environment was measured to present the results of comparing the GNSS pseudorange-based dual-frequency positioning performance for each smarphone. Furthermore, we analyzed whether the results of the positioning performance can meet the HEA requirement of IMO for maritime navigation users. As the results of maritime experiment, it was confirmed that in the case of the smartphones supporting the dual-frequency, the position accuracy within 6 meters (95%) could be obtained, and the HEA position accuracy performance within 10 meters (95%) required by IMO could be achieved.

An historic study on the school that attached importance to moxibustion (주중구법파(注重灸法派)에 관(關)한 역사적(歷史的) 고찰(考察)("불론허실한열(不論虛實寒熱) 무소불의(無所不宜)" 구법파(灸法派)를 중심(中心)으로))

  • Lim, Han-Je;Yoon, Jong-Hwa
    • Journal of Acupuncture Research
    • /
    • v.17 no.2
    • /
    • pp.53-68
    • /
    • 2000
  • As compared with acupuncture, The moxibustion occurred differently in the background of formation and also disagreed in the process of development. From the Jin(晉) dynasty to the Song(宋) dynasty, The school that attached importance to moxibustion had occupied superority by far and had schemed the development of moxibustion. But after the Song(宋) dynasty, The school that attached importance to acupuncture rose. Therefore, The school that attached importance to moxibustion, even if the power decreased, still had kept in existence and had achieved the development of moxibustion. Especially, Among the chinese physicians that recognized "Moxibustion can cure all disease, so don't discuss the weakness the firmness the chills the fever and cauterize the skin" till the Song(宋) dynasty, Ge Hong(葛洪) put in order the basic theory for moxibustion in (A handbook of prescriptions for emergencies). Wang Tao(王燾) only respected the moxibustion and said "Moxibustion has a strange effect, then all acupuncture herb-med(medical decoction) herb-ex are unattainable to it" in volume 14 (Medical secrets of an official). Dou Cai(實材) insisted that moxibustion is prime for supporting the Yang(陽) and always must be cauterized with moxa on Guan Yuan(關元) Qi Hai(氣海) Ming Guan(命關), Zhons Wan(中脘) etc. for supporting the Yang of Pi Shen(脾腎) in

  • PDF

Assessment of Position Degradation Due to Intermittent Broadcast of RTK MSM Correction Under Various Conditions

  • Yoon, Hyo Jung;Lim, Cheol soon;Park, Byungwoon
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.9 no.3
    • /
    • pp.237-248
    • /
    • 2020
  • GNSS has been evolving dramatically in recent years. There are currently 6 GNSS (4 GNSS, AND 2 RNSS) constellations, which are GPS (USA), GLONASS (Russia), BeiDou (China), Galileo (EU), QZSS (Japan), and IRNSS (India). The Number of navigation satellites is expected to be over 150 by 2020. As the number of both constellations and satellites used for the improvement of positioning performance, high accuracy, and robustness of precise positioning is more promising. However, a large amount of the correction messages is required to support the augmentation system for the available satellites of all the constellations. Since bandwidth for the correction messages is generally limited, sending or scheduling the correction messages might be a critical issue in the near future. In this study, we analyze the relationship between the size of the bandwidth and Real-Time Kinematics (RTK) performance. Multiple Signal Messages (MSM), the only Radio Technical Commission for Maritimes (RTCM) message that supports multi-constellation GNSS, has been used for this assessment. Instead of the conventional method that broadcasts all the messages at the same time, we assign the MSM broadcasting interval for each constellation in 5 seconds. An open sky static and dynamic test for this study was conducted on the roof of Sejong University. Our results show that the RTK fixed position accuracy is not affected by the 5-second interval corrections, but the ambiguity fixing rate is degraded for poor DOP cases when RTK correction are transmitted intermittently.

Impact of Multi-GNSS Measurements on Baseline Processing for Control Surveying Applications

  • Pawar, Komal Narayan;Yun, Seonghyeon;Lee, Hungkyu;Nguyen, Dinh Huy
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.10 no.2
    • /
    • pp.103-111
    • /
    • 2021
  • A series of experiments have been carried out by using National Geographic Information Institute(NGII)'s Continuously Operating Reference Station (CORS) data with various strategies to analyze the impact of multi-GNSS measurements on baseline processing. The results of baseline processing were compared in terms of ambiguity fixing rate, precision, and hypothesis tests were conducted to confirm the statistical difference. The combination of multi-GNSS measurements has helped to improve ambiguity fixing rate, especially under harsh positioning environments. Combination of GPS, Galileo, BeiDou could get better precision than that of GPS, GLONASS, Galileo, and adding QZSS made the baseline solution's vertical component more precisely. The hypothesis tests have statistically confirmed that the inclusion of the multi-GNSS in the baseline processing enables not only to reduce field observation time length but also to enhance the solution's precision. However, it is of interest to notice that results of the baseline solution are dependent upon the software used. Hence, comprehensive studies should be performed shortly to derive the best practice to select the appropriate software.

Accuracy Assessment of IGSO and GEO of BDS and QZSS Broadcast Ephemeris using MGEX Products

  • Son, Eunseong;Choi, Heonho;Joo, Jungmin;Heo, Moon Beom
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.9 no.4
    • /
    • pp.347-356
    • /
    • 2020
  • In this study, Inclined Geosynchronous Orbit (IGSO) and Geostationary Orbit (GEO) of BeiDou System (BDS) and Quasi Zenith Satellite System (QZSS) satellites positions and clock errors calculated by broadcast ephemeris and compared with Multi-GNSS Experiment (MGEX) products provided by five Analysis Centers (ACs). Root Mean Square Errors (RMSE) calculated for satellite position error. The IGSO results showed that 1.82 m, 0.91 m, 1.28 m in BDS and 1.34 m 0.36 m 0.49 m in QZSS and the GEO results showed that 2.85 m, 6.34 m, 6.42 m in BDS and 0.47 m, 4.79 m, 5.82 m in QZSS in the direction of radial, along-track and cross-track respectively. RMS calculated for satellite clock error. The IGSO result showed that 2.08 ns and 1.24 ns and the GEO result showed that 1.28 ns and 1.12 ns in BDS and QZSS respectively.

Correction of Time and Coordinate Systems for Interoperability of Multi-GNSS

  • Kim, Lawoo;Lee, Yu Dam;Lee, Hyung Keun
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.10 no.4
    • /
    • pp.279-289
    • /
    • 2021
  • GNSS receivers capable of tracking multiple Global Navigation Systems (GNSSs) simultaneously are widely used. In order to estimate accurate user position and velocity, it is necessary to consider the key elements that contribute to the interoperability of the different GNSSs. Typical examples are the time system and the coordinate system. Each GNSS is operated based on its own reference time system depending on when the system was developed and whether the leap seconds are applied. In addition, each GNSS is designed based on its own coordinate system based on earth model constant values. This paper addresses the interoperability issues from the viewpoint of Single Point Positioning (SPP) users utilizing multiple GNSS signals from GPS, GLONASS, BeiDou, and Galileo. Since the broadcast ephemerides of each GNSS are based on their own time and coordinate systems, the time and the coordinate systems should be unified for any user algorithm. For this purpose, this paper proposes a method of converting each GNSS coordinate system into the reference coordinate system through Helmert transformation. The error of the broadcast ephemerides was calculated with the precise ephemerides provided by the International GNSS Service (IGS). The effectiveness of the proposed multi-GNSS correction and transformation method is verified using the Multi-GNSS Experiment (MGEX) station data.

Monitoring of the Jamming Environment in the GNSS L5 Band in Korea Region

  • Lee, Hak-beom;Song, Young-Jin;Park, Dong-Hyuk;Lee, Sanguk;Won, Jong-Hoon
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.10 no.4
    • /
    • pp.353-361
    • /
    • 2021
  • This paper presents the jamming effect on the L5 band of Global Navigation Satellite System (GNSS) by analyzing real data collected via measurement campaigns in Korea region. In fact, the L5 band is one of the dedicated bands for various satellite navigation systems such as Global Positioning System (GPS), Galileo, BeiDou (BDS), and Quasi Zenith Satellite System (QZSS). And this band is also allocated along with various systems used for aeronautical radio navigation systems (ARNS). Among ARNS, the Distance Measuring Equipment (DME) and the Tactical Air Navigation System (TACAN) are systems that transmit and receive strong power pulse signals, which may cause unintentional jamming in the reception of GNSS signals. In this paper, signals in the main lobe of GPS L5, Galileo E5a, BDS B2a, and QZSS L5 are collected in Korean region to confirm whether the jamming effect exists in the band. And then, the pulse blanking technique, which is a simple signal processing technique capable of responding to pulsed jamming, is applied to analyze the jamming effect of DME/TACAN on the L5 band.

Analysis of Integrated GPS/GLONASS/BDS Positioning Accuracy using Low Cost Receiver (저가형 수신기를 이용한 GPS/GLONASS/BDS 통합 측위 정확도 분석)

  • Tae, Hyun U;Park, Kwan Dong;Kim, Mi So
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.23 no.4
    • /
    • pp.49-55
    • /
    • 2015
  • This paper explains major considerations for integrated GPS/GLONASS/BDS positioning, and then analyzes integrated GNSS positioning accuracies based on low-cost receivers in open-sky and poor reception environments. In an open-sky environment, horizontal RMSE of the integrated system positioning is about 1.2m. It shows improved result compared with single system positioning, the improvement ratio was 17-55%. In poor reception environments, we sometimes could not do positioning because the number of visible satellites gets below four. In an integrated positioning mode, the number of visible satellites was always higher than four, allowing us to find positions all the time. The horizontal RMSE of the integrated system positioning in poor reception environments is about 6.4m. Compared with single system positioning;the integrated system positioning shows better performance and the improvement ratio was 8-47% for the horizontal directions.

Modeling and Simulation of Scheduling Medical Materials Using Graph Model for Complex Rescue

  • Lv, Ming;Zheng, Jingchen;Tong, Qingying;Chen, Jinhong;Liu, Haoting;Gao, Yun
    • Journal of Information Processing Systems
    • /
    • v.13 no.5
    • /
    • pp.1243-1258
    • /
    • 2017
  • A new medical materials scheduling system and its modeling method for the complex rescue are presented. Different from other similar system, first both the BeiDou Satellite Communication System (BSCS) and the Special Fiber-optic Communication Network (SFCN) are used to collect the rescue requirements and the location information of disaster areas. Then all these messages will be displayed in a special medical software terminal. After that the bipartite graph models are utilized to compute the optimal scheduling of medical materials. Finally, all these results will be transmitted back by the BSCS and the SFCN again to implement a fast guidance of medical rescue. The sole drug scheduling issue, the multiple drugs scheduling issue, and the backup-scheme selection issue are all utilized: the Kuhn-Munkres algorithm is used to realize the optimal matching of sole drug scheduling issue, the spectral clustering-based method is employed to calculate the optimal distribution of multiple drugs scheduling issue, and the similarity metric of neighboring matrix is utilized to realize the estimation of backup-scheme selection issue of medical materials. Many simulation analysis experiments and applications have proved the correctness of proposed technique and system.