Browse > Article
http://dx.doi.org/10.11003/JPNT.2020.9.4.347

Accuracy Assessment of IGSO and GEO of BDS and QZSS Broadcast Ephemeris using MGEX Products  

Son, Eunseong (Korean Positioning System (KPS) Technology Team, Korea Aerospace Research Institute (KARI))
Choi, Heonho (Korean Positioning System (KPS) Technology Team, Korea Aerospace Research Institute (KARI))
Joo, Jungmin (Korean Positioning System (KPS) Technology Team, Korea Aerospace Research Institute (KARI))
Heo, Moon Beom (Global Navigation Satellite System (GNSS) R&D Division, KARI)
Publication Information
Journal of Positioning, Navigation, and Timing / v.9, no.4, 2020 , pp. 347-356 More about this Journal
Abstract
In this study, Inclined Geosynchronous Orbit (IGSO) and Geostationary Orbit (GEO) of BeiDou System (BDS) and Quasi Zenith Satellite System (QZSS) satellites positions and clock errors calculated by broadcast ephemeris and compared with Multi-GNSS Experiment (MGEX) products provided by five Analysis Centers (ACs). Root Mean Square Errors (RMSE) calculated for satellite position error. The IGSO results showed that 1.82 m, 0.91 m, 1.28 m in BDS and 1.34 m 0.36 m 0.49 m in QZSS and the GEO results showed that 2.85 m, 6.34 m, 6.42 m in BDS and 0.47 m, 4.79 m, 5.82 m in QZSS in the direction of radial, along-track and cross-track respectively. RMS calculated for satellite clock error. The IGSO result showed that 2.08 ns and 1.24 ns and the GEO result showed that 1.28 ns and 1.12 ns in BDS and QZSS respectively.
Keywords
KPS; BDS; QZSS; broadcast ephemeris; accuracy;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Kong, J., Mao, X., & Li, S. 2016, BDS/GPS Dual Systems Positioning Based on the Modified SR-UKF Algorithm, Sensors, 16, 635. https://doi.org/10.3390/s16050635   DOI
2 Kouba, J. 2015, A Guide to using International GNSS Service (IGS) Products, Natural Resources Canada
3 Li, X., Zhu, Y., Zheng, K., Yuan, Y., Liu, G., et al. 2020, Precise Orbit and Clock Products of Galileo, BDS and QZSS from MGEX Since 2018: Comparison and PPP Validation, Remote Sens, 12, 1415-1436. https://doi.org/10.3390/rs12091415   DOI
4 Liu, G. & Guo, J. 2014, Real-time Determination of a BDS Satellite's Velocity using the Broadcast Ephemeris, 2014 Fourth International Conference on Instrumentation and Measurement, Computer, Communication and Control, 18-20 Sept. 2014, Harbin, China, pp.478-483. https://doi.org/10.1109/IMCCC.2014.104   DOI
5 Ma, X., Tang, C., Wang, X., Jin, C., & Ma, X. 2018, Accuracy Assessment of Broadcast Ephemerides for Quasi-Zenith Satellite System, in 2018 China Satellite Navigation Conference (CSNC) 2018 Proceedings, 23-25 May 2018, Harbin, China. https://doi.org/10.1007/978-981-13-0029-5_1   DOI
6 Malys, S. 2018, Evolution of the World Geodetic System 1984 (WGS 84) Terrestrial Reference Frame, International Committee on Global Navigation Satellite System Working Group Meeting, Xi'an, China, 6-8 Nov 2018
7 MGEX, MGEX Home [Internet], cited 2020 July 6, available from: http://mgex.igs.org/
8 Zhang, J., Zhang, K., Grenfell, R., & Deakin, R. 2006, GPS Satellite Velocity and Acceleration Determination using the Broadcast Ephemeris, The Journal of Navigation, 59, 293-305. https://doi.org/10.1017/S0373463306003638   DOI
9 Cheng, P., Wen, H., Cheng, Y., & Wang, H. 2009, Parameters of the CGCS 2000 ellipsoid and comparisons with GRS 80 and WGS 84, Acta Geodaetica et Cartographica Sinica, 38, 189-194   DOI
10 Cabinet Office 2018, Quasi-Zenith Satellite System Interface Specification Satellite Positioning, Navigation and Timing Service (IS-QZSS-PNT-003)
11 China Satellite Navigation Office 2013, BeiDou Navigation Satellite System Signal In Space Interface Control Document Open Service Signal (Version 2.0)
12 Gurtner, W. & Estey, L. 2018, RINEX: The Receiver Independent Exchange Format Version 3.04
13 Hofmann-Wellenhof, B., Lichtenegger, H., & Wasle, E. 2008, GNSS: Global Navigation Satellite System: GPS, GLONASS & More (Wien: Springer-Verlag)
14 IGS About [Internet], cited 2020, available from: http://www.igs.org/about
15 IGS Products [Internet], cited 2020, available from: http://www.igs.org/products
16 IGSMAIL, Switch to IGb14 reference frame [Internet], cited 2020 Apr 14, available from: https://lists.igs.org/pipermail/igsmail/2020/007917.html
17 Jiao, G., Song, S., Liu, Y., Su, K., Cheng, N., et al. 2020, Analysis and Assessment of BDS-2 and BDS-3 Broadcast Ephemeris: Accuracy, the Datum of Broadcast Clocks and Its Impact on Single Point Positioning, Remote Sens, 12, 2081-2104. https://doi.org/10.3390/rs12132081   DOI
18 Ray, J. & Senior, K. 2005, Geodetic Techniques for Time and Frequency Comparisons using GPS Phase and Code Measurements, Metrologia, 42, 215-232. https://doi.org/10.1088/0026-1394/42/4/005   DOI
19 QZS System Service Inc. (QSS) 2017, Time and Coordinate System for QZSS (Quasi-Zenith Satellite System) PNT (Positioning, Navigation and Timing service), International Committee on Global Navigation Satellite System Working Group Meeting, Kyoto, Japan, 2-7 Dec 2017
20 JPL, Ascii format [Internet], cited 2015, available from: ftp://ssd.jpl.nasa.gov/pub/eph/planets/ascii/ascii_format.txt/
21 Remondi, B. W. 2004, Computing Satellite Velocity using the Broadcast Ephemeris, GPS Solutions, 8, 181-183. https://doi.org/10.1007/s10291-004-0094-6   DOI
22 Shin, M., Lim, D. W., Chun, S., & Heo, M. B. 2019, A Study on the Satellite Orbit Design for KPS Requirements, JPNT, 8, 215-223. https://doi.org/10.11003/JPNT.2019.8.4.215   DOI
23 Steigenberger, P. & Montenbruck, O. 2019, Consistency of MGEX Orbit and Clock Products, Engineering, 1-6. https://doi.org/10.1016/j.eng.2019.12.005   DOI
24 Vallado, D. A. & McClain, W. D. 2013, Fundamentals of Astrodynamics and Applications, Fourth Edition (Hawthorne: Microcosm Press)
25 Wang, B., Chen, J., & Wang, B. 2019, Analysis of Galileo Clock Products of MGEX-ACs, 2019 European Navigation Conference (ENC), Warsaw, Poland, 9-12 Apr 2019. https://doi.org/10.1109/EURONAV.2019.8714186   DOI
26 Xu, G. 2008, Orbits (Berlin Heidelberg: Springer-Verlag)