• Title/Summary/Keyword: Behaviour Based Safety

Search Result 89, Processing Time 0.024 seconds

FALCON code-based analysis of PWR fuel rod behaviour during RIA transients versus new U.S.NRC and current Swiss failure limits

  • Khvostov, G.;Gorzel, A.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.11
    • /
    • pp.3741-3758
    • /
    • 2021
  • Outcomes of the FALCON code analysis-related part of the STARS-ENSI Service Project on Evaluation of the new U.S.NRC RIA Fuel Safety Criteria and Application to the Swiss Reactors are presented. Substantial conservatism of the updated safety limits for high-temperature and PCMI cladding failure, as proposed in the NRC Regulatory Guide RG 1.236, is confirmed. Applicability of the updated failure limits to fuel safety analysis in the Swiss PWRs, as applied to standard fuel designs using UO2 fuel pellets and SRA Zry-4 as cladding materials is discussed. Conducting of new integral RIA tests with irradiated samples using doped- and gadolinia fuel pellets to support appropriate fuel safety criteria for RIA events is recommended.

An Investigation of Road Crossing Behaviour of Older Pedestrians at Unsignalized Crosswalk (무신호 단일로 횡단보도에서 고령 보행자의 횡단행태조사 및 분석)

  • JANG, Jeong Ah;KIM, Junghwa;CHOI, Keechoo
    • Journal of Korean Society of Transportation
    • /
    • v.34 no.3
    • /
    • pp.207-221
    • /
    • 2016
  • In Korea, older pedestrian accounted for 57% of all pedestrian deaths although a ratio of older pedestrian accidents to total pedestrian accidents was only 25.9%. Though ageing population problem becomes more challenging for road safety, little is know about the behaviour of older pedestrian's behaviour. This study aimed to identify road crossing behaviour of older pedestrian at three-lane unsignalized crosswalks using video image analysis and to compare the behaviour of older pedestrian to younger one by indicators including approaching speed, the number of walking steps and other factors. The results showed that there was a difference of approaching time at kerb, waiting time at kerb, the number of glances at kerb, and the number of glances at crossing between two groups under the situation of car approaching to crosswalks. It also showed that older pedestrian usually spent 1.16 times more than younger pedestrian to walk across the crosswalk with only 84.4% of walking speed of younger pedestrian. The number of steps of older pedestrian for road crossing was 1.12 times higher with 90% shorter steps than younger pedestrian. It was concluded that older pedestrian usually decided to walk across in case of 1.67 times longer headway than younger pedestrian's decision. These results could be applied in road and facility design for better safety of older pedestrians.

Examination of 3D long-term viscoplastic behaviour of a CFR dam using special material models

  • Karalar, Memduh;Cavusli, Murat
    • Geomechanics and Engineering
    • /
    • v.17 no.2
    • /
    • pp.119-131
    • /
    • 2019
  • Time dependent creep settlements are one of the most important causes of material deteriorations for the huge water structures such as concrete faced rockfill dams (CFRDs). For this reason, performing creep analyses of CFRDs is vital important for monitoring and evaluating of the future and safety of such dams. In this study, it is observed how changes viscoplastic behaviour of a CFR dam depending the time. Ilısu dam that is the longest concrete faced rockfill dam (1775 m) in the world is selected for the three dimensional (3D) analyses. 3D finite difference model of Ilısu dam is modelled using FLAC3D software based on the finite difference method. Two different special creep material models are considered in the numerical analyses. Wipp-creep viscoplastic material model and burger-creep viscoplastic material model were rarely used for the creep analyses of CFRDs in the last are taken into account for the concrete slab and rockfill materials-foundation, respectively. Moreover, interface elements are defined between the concrete slab-rockfill materials and rockfill materials-foundation to provide interaction condition for 3D model. Firstly, dam and foundation are collapsed under its self-weight and static behaviour of the dam is evaluated for the empty reservoir conditions. Then, reservoir water is modelled considering maximum water level of the dam and time-dependent creep analyses are performed for maximum reservoir condition. In this paper, maximum principal stresses, vertical-horizontal displacements and pore pressures that may occur on the dam body surface during 30 years (from 2017 to 2047) are evaluated in detail. According to numerical analyses, empty and maximum reservoir conditions of Ilısu dam are compared with each other in detail. 4 various nodal points are selected under the concrete slab to better seen viscoplastic behaviour changes of the dam and viscoplastic behaviour differences of these points during 30 years are graphically presented. It is clearly seen that horizontal-vertical displacements and principal stresses for maximum reservoir condition are more than the empty reservoir condition of the dam and significant pore pressures are observed during 30 years for maximum reservoir condition. In addition, horizontal-vertical displacements, principal stresses and pore pressures for 4 nodal points obviously increased until a certain time and changes decreased after this time.

Creep behaviour of normal- and high-strength self-compacting concrete

  • Aslani, Farhad
    • Structural Engineering and Mechanics
    • /
    • v.53 no.5
    • /
    • pp.921-938
    • /
    • 2015
  • Realistic prediction of concrete creep is of crucial importance for durability and long-term serviceability of concrete structures. To date, research about the behaviour of self-compacting concrete (SCC) members, especially concerning the long-term performance, is rather limited. SCC is quite different from conventional concrete (CC) in mixture proportions and applied materials, particularly in the presence of aggregate which is limited. Hence, the realistic prediction of creep strains in SCC is an important requirement for the design process of this type of concrete structures. This study reviews the accuracy of the conventional concrete (CC) creep prediction models proposed by the international codes of practice, including: CEB-FIP (1990), ACI 209R (1997), Eurocode 2 (2001), JSCE (2002), AASHTO (2004), AASHTO (2007), AS 3600 (2009). Also, SCC creep prediction models proposed by Poppe and De Schutter (2005), Larson (2007) and Cordoba (2007) are reviewed. Further, new creep prediction model based on the comprehensive analysis on both of the available models i.e. the CC and the SCC is proposed. The predicted creep strains are compared with the actual measured creep strains in 55 mixtures of SCC and 16 mixtures of CC.

A partial factors methodology for structural safety assessment in non-linear analysis

  • Castro, Paula M.R.P.;Delgado, Raimundo M.;Cesar de Sa, Jose M.A.
    • Computers and Concrete
    • /
    • v.2 no.1
    • /
    • pp.31-53
    • /
    • 2005
  • In the present structural codes the safety verification is based on a linear analysis of the structure and the satisfaction of ultimate and serviceability limit states, using a semi-probabilistic security format through the consideration of partial safety factors, which affect the action values and the characteristic values of the material properties. In this context, if a non-linear structural analysis is wanted a difficulty arises, because the global safety coefficient, which could be obtained in a straightforward way from the non-linear analysis, is not directly relatable to the different safety coefficient values usually used for the different materials, as is the case for reinforced concrete structures. The work here presented aims to overcome this difficulty by proposing a methodology that generalises the format of safety verification based on partial safety factors, well established in structural codes within the scope of linear analysis, for cases where non-linear analysis is needed. The methodology preserves the principal assumptions made in the codes as well as a reasonable simplicity in its use, including a realistic definition of the material properties and the structural behaviour, and it is based on the evaluation of a global safety coefficient. Some examples are presented aiming to clarify and synthesise all the options that were taken in the application of the proposed methodology, namely how to transpose the force distributions obtained with a non-linear analysis into design force distributions. One of the most important features of the proposed methodology, the ability for comparing the simplified procedures for second order effects evaluation prescribed in the structural codes, is also presented in a simple and systematic way. The potential of the methodology for the development and assessment of alternative and more accurate procedures to those already established in codes of practice, where non-linear effects must be considered, is also indicated.

Assessing 3D seismic damage performance of a CFR dam considering various reservoir heights

  • Karalar, Memduh;Cavusli, Murat
    • Earthquakes and Structures
    • /
    • v.16 no.2
    • /
    • pp.221-234
    • /
    • 2019
  • Today, many important concrete face rockfill dams (CFRDs) have been built on the world, and some of these important structures are located on the strong seismic regions. In this reason, examination and monitoring of these water construction's seismic behaviour is very important for the safety and future of these dams. In this study, the nonlinear seismic behaviour of Ilısu CFR dam which was built in Turkey in 2017, is investigated for various reservoir water heights taking into account 1995 Kobe near-fault and far-fault ground motions. Three dimensional (3D) finite difference model of the dam is created using the FLAC3D software that is based on the finite difference method. The most suitable mesh range for the 3D model is chosen to achieve the realistic numerical results. Mohr-Coulomb nonlinear material model is used for the rockfill materials and foundation in the seismic analyses. Moreover, Drucker-Prager nonlinear material model is considered for the concrete slab to represent the nonlinearity of the concrete. The dam body, foundation and concrete slab constantly interact during the lifetime of the CFRDs. Therefore, the special interface elements are defined between the dam body-concrete slab and dam body-foundation due to represent the interaction condition in the 3D model. Free field boundary condition that was used rarely for the nonlinear seismic analyses, is considered for the lateral boundaries of the model. In addition, quiet artificial boundary condition that is special boundary condition for the rigid foundation in the earthquake analyses, is used for the bottom of the foundation. The hysteric damping coefficients are separately calculated for all of the materials. These special damping values is defined to the FLAC3D software using the special fish functions to capture the effects of the variation of the modulus and damping ratio with the dynamic shear-strain magnitude. Total 4 different reservoir water heights are taken into account in the seismic analyses. These water heights are empty reservoir, 50 m, 100 m and 130 m (full reservoir), respectively. In the nonlinear seismic analyses, near-fault and far-fault ground motions of 1995 Kobe earthquake are used. According to the numerical analyses, horizontal displacements, vertical displacements and principal stresses for 4 various reservoir water heights are evaluated in detail. Moreover, these results are compared for the near-fault and far-faults earthquakes. The nonlinear seismic analysis results indicate that as the reservoir height increases, the nonlinear seismic behaviour of the dam clearly changes. Each water height has different seismic effects on the earthquake behaviour of Ilısu CFR dam. In addition, it is obviously seen that near-fault earthquakes and far field earthquakes create different nonlinear seismic damages on the nonlinear earthquake behaviour of the dam.

A Study on Severe Accident Management Scheme using LOCA Sequence Database System (원자력발전소의 냉각재상실사고 특성DB를 활용한 중대사고 관리체계연구)

  • Choi, Young;Park, Jong-Ho
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.6
    • /
    • pp.172-178
    • /
    • 2014
  • In terms of an accident management, the cases causing severe core damage need to be analyzed and arranged systematically for an easy access to the results since the Three Mile Island (TMI) accident. The objectives of this paper are to explain how to identify the plant response and cope with its vulnerabilities using the probabilistic safety assessment (PSA) quantified results and severe accident database SARDB(Severe Accident Risk Data Bank) based on sequences analysis results. Although PSA has been performed for the Korean Standard Power Plants (KSNPs), and that it considered the necessary sequences for an assessment of the containment integrity. The developed Database (DB) system includes a graphical display for a plant and equipment status, previous research results by a knowledge-based technique, and the expected plant behaviour. The plant model used in this paper is oriented to the cases of loss of coolant accident (LOCA) is be used as a training simulator for a severe accident management.

The Chinese Performance-based Code for Fire-resistance of Steel Structures

  • Li, Guo-Qiang;Zhang, Chao
    • International Journal of High-Rise Buildings
    • /
    • v.2 no.2
    • /
    • pp.123-130
    • /
    • 2013
  • In the past two decades, researchers from different countries have conducted series of experimental and theoretical studies to investigate the behaviour of structures in fire. Many new insights, data and calculation methods have been reported, which form the basis for modern interdisciplinary structural fire engineering. Some of those methods are now adopted in quantitative performance-based codes and have been migrated into practice. Mainly based on the achievements in structural fire research at China, the Chinese national code for fire safety of steel structures in buildings has been drafted and approved, and will be released in this year. The code is developed to prevent steel structures subjected to fire from collapsing, ensure safe evacuation of building occupants, and reduce the cost for repairing the damages of the structure caused by fire. This paper presents the main contents of the code, which includes the fire duration requirements of structural components, fundamental requirements on fire safety design of steel components, temperature increasing of atmosphere and structural components in fire, loading effect and capacity of various components in fire, and procedure for fire-resistant check and design of steel components. The analytical approaches employed in the code and their validation works are also presented.

Cyclic behaviour and modelling of stainless-clad bimetallic steels with various clad ratios

  • Liu, Xinpei;Ban, Huiyong;Zhu, Juncheng;Uy, Brian
    • Steel and Composite Structures
    • /
    • v.34 no.2
    • /
    • pp.189-213
    • /
    • 2020
  • Stainless-clad (SC) bimetallic steels that are manufactured by metallurgically bonding stainless steels as cladding metal and conventional mild steels as substrate metal, are kind of advanced steel plate products. Such advanced composite steels are gaining increasingly widespread usage in a range of engineering structures and have great potential to be used extensively for large civil and building infrastructures. Unfortunately, research work on the SC bimetallic steels from material level to structural design level for the applications in structural engineering field is very limited. Therefore, the aim of this paper is to investigate the material behaviour of the SC bimetallic steels under the cyclic loading which structural steels usually could encounter in seismic scenario. A number of SC bimetallic steel coupon specimens are tested under monotonic and cyclic loadings. The experimental monotonic and cyclic stress-strain curves of the SC bimetallic steels are obtained and analysed. The effects of the clad ratio that is defined as the ratio of the thickness of cladding layer to the total thickness of SC bimetallic steel plate on the monotonic and cyclic behaviour of the SC bimetallic steels are studied. Based on the experimental observations, a cyclic constitutive model with combined hardening criterion is recommended for numerical simulation of the cyclic behaviour of the SC bimetallic steels. The parameters of the constitutive model for the SC bimetallic steels with various clad ratios are calibrated. The research outcome presented in this paper may provide essential reference for further seismic analysis of structures fabricated from the SC bimetallic steels.

Safety Pharmacology of CJ-11555 (CJ-11555의 안전성 약리실험)

  • 최재묵;이성학;김일환;박지은;김덕열;노현정;김택로;최광도;김영훈
    • Toxicological Research
    • /
    • v.20 no.2
    • /
    • pp.159-166
    • /
    • 2004
  • Safety pharmacological properties of CJ-11555, an anti-cirrhotic agent, were investigated in experimental animals and in vitro test system. CJ-11555 had no effects on normal body temperature in rats, motor coordination, chemoshock induced by pentetrazol, electric shock induced by electric shocker and writhing syndromes in mice at dose levels of 100, 300 and 1,000 mg/kg. CJ-11555 inhibited intestinal activity and prolonged hexobarbital-induced sleeping time in mice at the dose level of 1,000 mg/kg. CJ-11555 affected on general activity and behaviour tests in SD rats, such as lacrimation, ptosis, piloerection, decreased body tone, abnormal dispersion within the cage, diarrhoea, red colored faeces, slight hypothermia and decreased grooming, at the dose level of 1,000 mg/kg in rats. CJ-11555 was effected on cardiovascular and respiratory system in anesthetized beagle dogs, such as tachycardia, increase of mean blood pressure and decrease of PR interval, decrease of respiratory rate and minute volume, at dose levels of 10 and 30 mg/kg. However, these effects were also observed in vehicle treated anesthetized beagle dogs. In in vitro experiments, CJ-11555 inhibited agonists (histamine, acetyl-choline or $BaCl_2$) induced contraction of isolated guinea-pig at the concentration of 30$\times$$10^6$ M. CJ-11555 was weekly inhibited hERG channel current at concentrations of 10 and 30$\times$$10^6$ M, and $IC_{50}$ was estimated to be higher than 30${\times}$$10^6$M. Based on these results, it was concluded that CJ-11555 affected on cardiovascular and respiratory system, general activity and behaviour and hexobarbital-induced sleeping time at the dose level of 1,000 mg/kg and contraction of the smooth muscle and hERG channel current at the concentration of 30$\times$$10^6$ M.