• 제목/요약/키워드: Behavioral inhibition

검색결과 110건 처리시간 0.03초

Scopolamine 유발 기억 손상 마우스에서 익모초의 효과 (Effect of Leonurus japonicus Houtt. on Scopolamine-induced Memory Impairment in Mice)

  • 이지혜;김혜정;장귀영;서경혜;김미려;최윤희;정지욱
    • 동의생리병리학회지
    • /
    • 제34권2호
    • /
    • pp.81-87
    • /
    • 2020
  • Cognitive impairment is symptoms of dementia, a degenerative brain disease that is drawing attention in a rapidly aging society. This study was conducted to investigate the improvement of cognitive function of Leonurus japonicus on scopolamine-induced memory impairment in mice and the effect and mechanism of memory recovery. In vivo studies were conducted on mice orally pretreated with L. japonicus in doses of 50, 100 and 200 mg/kg (p.o.) and scopolamine (1 mg/kg, i.p.) were injected 30 min before the behavioral task. Antioxidant activity was assessed by 2,2-diphenyl-1-picryl hydrazyl (DPPH) assay and 2,2-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assay, and acetylcholinesterase (AChE) inhibition activity evaluated by Ellman's method. In behavior studies showed that L. japonicus has an improved the memory of scopolamine-treated mice in Y-maze, passive avoidance and Morris water maze test. In addition, L. japonicus was also exerted free radical scavenging activity and inhibited acetyl cholinesterase activity. These results suggest that L. japonicus improves short-term and long-term memory in scopolamine-induced memory decline model and prevents scopolamine-induced memory impairments through in reduced oxidative stress and acetyl cholinesterase inhibition effect. Thus, L. japonicus is related to functional medicinal materials for prevention and treatment of human dementia patients.

6-OHDA 파괴 후 수종의 향정신약물의 작용에 대한 중추도파민 신경계의 역할 (The Role of Dopaminergic Fibers on the Action of Psychotropic Drugs in 6-OHDA-treated Rats)

  • 이순철;유관희
    • Journal of Ginseng Research
    • /
    • 제17권3호
    • /
    • pp.187-195
    • /
    • 1993
  • We have examined the functional role of central dopaminergic processes on the behavioral pharmacological effects induced by psychotropics and red ginseng saponins of normal rats and compared with that of brain damaged rats. Desipramine and clomipramine produced, a significant depression of the locomotor activity in normal rats, but in brain damaged rats, they did not have any effect throughout the experimental period of 4 hours. Total saponin (50~200 mg/kg), PT (25~50 mg/kg), PD (25~50 mg/kg), $Rg_1$(12.5~25 mg/kg), $Rb_1$ (12.5~50 mg/kg) did not change, and high concentrations of PT (100 mg/kg), PD (100 mg/kg) and $Rg_1$ (50 mg/kg) showed a significant decrease in the locomotor activity of one hour after administration but total saponin (100 mg/kg), PD (25~50 mg/kg), Rgl (12.5 mg/kg), $Rb_1$ (12.5 mg/kg) markedly increased the locomotor activity of four hour after administration in normal rats. On the other hand, total saponin (50 mg/kg), PT (100 mg/kg) and PD (100 mg/kg) Produced a prominent stimulation of the locomotor activity in brain damaged rats. These results suggest that the inhibition of the locomotor activity induced by antidepressants was not affected by the sensitivity of cerebral DA system, whereas red ginseng saponin showed antifatigue effect and also the stimulation of the locomotor activity induced by red ginseng saponin was mediated by the inhibition of cerebral DA system. These psychotropic action of red ginseng saponins could be responsible for the beneficial effects on conditions of fatigue and decreased alertness.

  • PDF

Scopolamine 유발 기억 손상 마우스 모델에서 국산 산사와 중국산 산사의 항건망 효과 비교 (Comparative Study on the Effects of Korean and Chinese Crataegus pinnatifida on Scopolamine-induced Memory Impairment in Mice)

  • 이지혜;김혜정;이찬희;박상혁;정철종;백경연;신진기;정지욱
    • 동의생리병리학회지
    • /
    • 제32권6호
    • /
    • pp.375-383
    • /
    • 2018
  • This study was conducted to investigate the cognitive improvement and memory recovery effects of Korean and Chinese Crataegus pinnatifida ethanolic extracts on scopolamine-induced memory impairment in mice. In vivo studies were carried out with mice treated with Korean Crataegus pinnatifida extracts (KCF) and Chinese Crataegus pinnatifida extracts (CCF) in doses of 5 and 50 mg/kg (p.o.) and scopolamine was injected 30 min before the behavioral testing. Antioxidant activity was assessed by 2,2-diphenyl-1-picryl hydrazyl (DPPH) assay and 2,2-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assay, and acetylcholinesterase inhibition by Ellman's modified method. The chlorogenic acid and hyperoside as marker compounds of KCF and CCF was quantified by ultra-performance liquid chromatography analysis (UPLC). Results showed that KCF was more contained high content of chlorogenic acid and hyperoside than CCF. In addition, KCF was more exerted free radical (DPPH and ABTS) scavenging activity and blocked AChE activity than CCF. In vivo studies also showed that KCF administration has a further improved the memory of scopolamine-treated mice than CCF in Y-maze test, passive avoidance test and Morris water maze test. These results revealed that KCF more prevents scopolamine-induced memory impairments through antioxidant and acethylcholinesterase inhibition effect compared CCF.

Inflammatory cytokines in midbrain periaqueductal gray contribute to diabetic induced pain hypersensitivity through phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin signaling pathway

  • Guo, Mochi;Jiang, Zongming;Chen, Yonghao;Wang, Fei;Wang, Zhifeng
    • The Korean Journal of Pain
    • /
    • 제34권2호
    • /
    • pp.176-184
    • /
    • 2021
  • Background: Diabetes-related neuropathic pain frequently occurs, and the underpinning mechanism remains elusive. The periaqueductal gray (PAG) exhibits descending inhibitory effects on central pain transmission. The current work aimed to examine whether inflammatory cytokines regulate mechanical allodynia and thermal hyperalgesia induced by diabetes through the phosphoinositide 3-kinase (PI3K)-mammalian target of rapamycin (mTOR) pathway in the PAG. Methods: Streptozotocin (STZ) was administered intraperitoneally to mimic allodynia and hyperalgesia evoked by diabetes in rats. Behavioral assays were carried out for determining mechanical pain and thermal hypersensitivity. Immunoblot and ELISA were performed to examine PAG protein amounts of interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α (TNF-α), as well as their corresponding receptors in STZ rats, and the expression of PI3K/protein kinase B (Akt)/mTOR signaling effectors. Results: Increased PAG p-PI3K/p-Akt/p-mTOR protein amounts were observed in STZ-induced animals, a PI3K-mTOR pathway inhibition in the PAG attenuated neuropathic pain responses. Moreover, the PAG concentrations of IL-1β, IL-6, and TNF-α and their receptors (namely, IL-1R, IL-6R, and tumor necrosis factor receptor [TNFR] subtype TNFR1, respectively) were increased in the STZ rats. Additionally, inhibiting IL-1R, IL-6R, and TNFR1 ameliorated mechanical allodynia and thermal hyperalgesia in STZ rats, alongside the downregulation of PI3K-mTOR signaling. Conclusions: Overall, the current study suggests that upregulated proinflammatory cytokines and their receptors in the PAG activate PI3K-mTOR signaling, thereby producing a de-inhibition effect on descending pathways in modulating pain transmission, and eventually contributing to neuropathic pain.

Autism-Like Behavioral Phenotypes in Mice Treated with Systemic N-Methyl-D-Aspartate

  • Adil, Keremkleroo Jym;Gonzales, Edson Luck;Remonde, Chilly Gay;Boo, Kyung-Jun;Jeon, Se Jin;Shin, Chan Young
    • Biomolecules & Therapeutics
    • /
    • 제30권3호
    • /
    • pp.232-237
    • /
    • 2022
  • Autism spectrum disorder (ASD) having core characteristics of social interaction problems and repetitive behaviors and interests affects individuals at varying degrees and comorbidities, making it difficult to determine the precise etiology underlying the symptoms. Given its heterogeneity, ASD is difficult to treat and the development of therapeutics is slow due to the scarcity of animal models that are easy to produce and screen with. Based on the theory of excitation/inhibition imbalance in the brain with ASD which involves glutamatergic and/or GABAergic neurotransmission, a pharmacologic agent to modulate these receptors might be a good starting point for modeling. N-methyl-D-aspartic acid (NMDA) is an amino acid derivative acting as a specific agonist at the NMDA receptor and therefore imitates the action of the neurotransmitter glutamate on that receptor. In contrast to glutamate, NMDA selectively binds to and regulates the NMDA receptor, but not other glutamate receptors such as AMPA and kainite receptors. Given this role, we aimed to determine whether NMDA administration could result in autistic-like behavior in adolescent mice. Both male and female mice were treated with saline or NMDA (50 and 75 mg/kg) and were tested on various behavior experiments. Interestingly, acute NMDA-treated mice showed social deficits and repetitive behavior similar to ASD phenotypes. These results support the excitation/inhibition imbalance theory of ASD and that NMDA injection can be used as a pharmacologic model of ASD-like behaviors.

쥐오줌풀 추출물이 MIA동물모델에서의 신경발달 단백질의 발현과 행동증상에 미치는 영향 (Effect of Valeriana fauriei Extract on the Neurodevelopmental Proteins Expression and Behavioral Patterns in Maternal Immune Activation Animal Model)

  • 원한솔;김영옥;이화영;임지윤;이상현;조익현;이상원;박춘근;김형기;권준택;김학재
    • 한국약용작물학회지
    • /
    • 제24권5호
    • /
    • pp.341-350
    • /
    • 2016
  • Background: Prenatal exposure to infectious and/or inflammatory insults can increase the risk of developing neuropsychiatric disorder such as bipolar disorder, autism, and schizophrenia later in life. We investigated whether Valeriana fauriei (VF) treatment alleviates prepulse inhibition (PPI) deficits and social interaction impairment induced by maternal immune activation (MIA). Methods and Results: Pregnant mice were exposed to polyriboinosinic-polyribocytidilic acid (5 mg/kg, viral infection mimic) on gestational day 9. The adolescent offspring received daily oral treatment with VF (100 mg/kg) and injections of clozapine (5 mg/kg) for 30 days starting on the postnatal day 35. The effects of VF extract treatment on behavioral activity impairment and protein expression were investigated using the PPI analysis, forced swim test (FST), open field test (OFT), social interaction test (SIT), and immunohistochemistry. The MIA-induced offspring showed deficits in the PPI, FST, OFT, and SIT compared to their non MIA-induced counterparts. Treatment with the VF extract significantly recovered the sensorimotor gating deficits and partially recovered the aggressive behavior observed in the SIT. The VF extract also reversed the downregulation of protein expression induced by MIA in the medial prefrontal cortex. Conclusions: Our results provide initial evidence of the fact that the VF extract could reverse MIA-induced behavioral impairment and prevent neurodevelopmental disorders such as schizophrenia.

MeBib Suppressed Methamphetamine Self-Administration Response via Inhibition of BDNF/ERK/CREB Signal Pathway in the Hippocampus

  • Kim, Buyun;Jha, Sonam;Seo, Ji Hae;Jeong, Chul-Ho;Lee, Sooyeun;Lee, Sangkil;Seo, Young Ho;Park, Byoungduck
    • Biomolecules & Therapeutics
    • /
    • 제28권6호
    • /
    • pp.519-526
    • /
    • 2020
  • Methamphetamine (MA) is one of the most commonly abused drugs in the world by illegal drug users. Addiction to MA is a serious public health problem and effective therapies do not exist to date. It has also been reported that behavior induced by psychostimulants such as MA is related to histone deacetylase (HDAC). MeBib is an HDAC6 inhibitor derived from a benzimidazole scaffold. Many benzimidazole-containing compounds exhibit a wide range of pharmacological activity. In this study, we investigated whether HDAC6 inhibitor MeBib modulates the behavioral response in MA self-administered rats. Our results demonstrated that the number of active lever presses in MA self-administered rats was reduced by pretreatment with MeBib. In the hippocampus of rats, we also found MA administration promotes GluN2B, an NMDA receptor subunit, expression, which results in sequential activation of ERK/CREB/BDNF pathway, however, MeBib abrogated it. Collectively, we suggest that MeBib prevents the MA seeking response induced by MA administration and therefore, represents a potent candidate as an MA addiction inhibitor.

Methamphetamine 투여가 흰쥐 뇌 부위별 dopamine, serotonin량에 미치는 영향 (The Effect of Methamphetamine on the Regional Levels of Dopamine and Serotonin in the Rat Brain)

  • 노일협;정희선
    • 약학회지
    • /
    • 제34권5호
    • /
    • pp.311-322
    • /
    • 1990
  • This study primarily attempted to investigate the effects of methamphetamine on stereotyped behavior. Furthermore, an extensive experiment was conducted to examine the cortex methamphetamine concentration and levels of dopamine, serotonin, and their metabolites in striatum, septum and hypothalamus. Following treatment with 10 mg/kg methamphetamine, stereotyped behavior was observed in 10 minutes. Consequently female rats displayed more intense and longer lasting activity than the male. The concentration of cortex methamphetamine was even higher in female than male. The administration of methamphetamine increased the rate of dopamine turnover-i.e. lower dopamine, higher homovanillic acid in the striatum, septum. The highest rate was found in the striatum. Methamphetamine decreased the levels of serotonin, and its metabolite of 5-indoleacetic acid in the striatum, septum. An intensity in behavioral response was accompanied by an increase in dopamine turnover, a decrease in serotonergic transmission. The reduction of 3,4-dihydroxyphenylacetic acid-i.e. the metabolite of dopamine was due not to the inhibition of monoamine oxidase but to the induction of monoamine oxidase but to the induction of catechol-O-methyltransferase. The phenomenon of biogenic amines by methamphetamine concurred upon the concentration of methamphetamine in the brain. This process preceded stereotyped behavior. After single injection of 10 mg/kg methamphetamine, the levels of biogenic amines recovered within 6 hours.

  • PDF

Effects of Acupuncture Stimulation at Different Acupoints on Formalin-Induced Pain in Rats

  • Chang, Kyung Ha;Bai, Sun Joon;Lee, Hyejung;Lee, Bae Hwan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제18권2호
    • /
    • pp.121-127
    • /
    • 2014
  • Acupuncture is the process of stimulating skin regions called meridians or acupoints and has been used to treat pain-related symptoms. However, the pain-relieving effects of acupuncture may be different depending on acupoints. In the present study, the effects of acupuncture on behavioral responses and c-Fos expression were evaluated using a formalin test in male Sprague-Dawley rats in order to clarify the analgesic effects of three different acupoints. Each rat received manual acupuncture at the ST36 (Zusanli), SP9 (Yinlingquan) or BL60 (Kunlun) acupoint before formalin injection. Flinching and licking behaviors were counted by two blinded investigators. Fos-like immunoreactivity was examined by immunohistochemistry in the rat spinal cord. Manual acupuncture treatment at BL60 acupoint showed significant inhibition in flinching behavior but not in licking. Manual acupuncture at ST36 or SP9 tended to inhibit flinching and licking behaviors but the effects were not statistically significant. The acupuncture at ST36, SP9, or BL60 reduced c-Fos expression as compared with the control group. These results suggest that acupuncture especially at the BL60 acupoint is more effective in relieving inflammatory pain than other acupoints.

Cocaine- and Amphetamine-Regulated Transcript (CART) Peptide Plays Critical Role in Psychostimulant-Induced Depression

  • Meng, Qing;Kim, Hyoung-Chun;Oh, Seikwan;Lee, Yong-Moon;Hu, Zhenzhen;Oh, Ki-Wan
    • Biomolecules & Therapeutics
    • /
    • 제26권5호
    • /
    • pp.425-431
    • /
    • 2018
  • Cocaine- and amphetamine-regulated transcript (CART) peptide is a widely distributed neurotransmitter expressed in the central nervous systems. Previously, several reports demonstrated that nucleus accumbal-injected CART peptide positively modulated behavioral sensitization induced by psychostimulants and regulated the mesocorticolimbic dopaminergic pathway. It is confirmed that CART peptide exerted inhibitory effect on psychostimulant-enhanced dopamine receptors signaling, $Ca^{2+}$/calmodulin-dependent kinase signaling and crucial transcription factors expression. Besides modulation of dopamine receptors-related pathways, CART peptide also exhibited elaborated interactions with other neurotransmitter receptors, such as glutamate receptors and ${\gamma}$-aminobutyric acid receptors, which further account for attribution of CART peptide to inhibition of psychostimulant-potentiated locomotor activity. Recently, CART peptide has been shown to have anxiolytic functions on the aversive mood and uncontrolled drug-seeking behaviors following drug withdrawal. Moreover, microinjection of CART peptide has been shown to have an antidepressant effect, which suggests its potential utility in the mood regulation and avoidance of depression-like behaviors. In this review, we discuss CART pathways in neural circuits and their interactions with neurotransmitters associated with psychostimulant-induced depression.