• 제목/요약/키워드: Beclin-1

검색결과 83건 처리시간 0.026초

Effects of Repeated Ovarian Stimulation on Ovarian Function and Aging in Mice

  • Whang, Jihye;Ahn, Cheyoung;Kim, Soohyun;Seok, Eunji;Yang, Yunjeong;Han, Goeun;Jo, Haeun;Yang, Hyunwon
    • 한국발생생물학회지:발생과생식
    • /
    • 제25권4호
    • /
    • pp.213-223
    • /
    • 2021
  • Controlled ovarian hyperstimulation (COH) is routinely used in the in vitro fertilization and embryo transfer (IVF-ET) cycles to increase the number of retrieved mature oocytes. However, the relationship between repeated COH and ovarian function is still controversial. Therefore, we investigated whether repeated ovarian stimulation affects ovarian aging and function, including follicular development, autophagy, and apoptosis in follicles. Ovarian hyperstimulation in mice was induced by intraperitoneal injection with pregnant mare serum gonadotropin (PMSG) and human chorionic gonadotropin (hCG). Mice subjected to ovarian stimulation once were used as a control group and 10 times as an experimental group. Repeated injections with PMSG and hCG significantly reduced the number of primary follicles compared to a single injection. The number of secondary and antral follicles increased slightly, while the number of corpus luteum increased significantly with repeated injections. On the other hand, repeated injections did not affect apoptosis in follicles associated with follicular atresia. The expression of autophagy-related genes Atg5, Atg12, LC3B, and Beclin1, cell proliferation-related genes mTOR, apoptosis-related genes Fas, and FasL was not significantly different between the two groups. In addition, the expression of the aging-related genes Dnmt1, Dnmt3a, and AMH were also not significantly different. In this study, we demonstrated that repeated ovarian stimulation in mice affects follicular development, but not autophagy, apoptosis, aging in ovary. These results suggest that repetition of COH in the IVF-ET cycle may not result in ovarian aging, such as a decrease in ovarian reserve in adult women.

Therapeutic Effects of (+)-Afzelechin on Particulate Matter-Induced Pulmonary Injury

  • Sanghee Cho;Yun Jin Park;Jong-Sup Bae
    • Biomolecules & Therapeutics
    • /
    • 제32권1호
    • /
    • pp.162-169
    • /
    • 2024
  • Particulate matter (PM) constitutes a hazardous blend of organic and inorganic particles that poses health risks. Inhalation of fine airborne PM with a diameter of ≤ 2.5 ㎛ (PM2.5) can lead to significant lung impairments. (+)-afzelechin (AZC), a natural compound sourced from Bergenia ligulata, boasts a range of attributes, including antioxidant, antimicrobial, anticancer, and cardiovascular effects. However, knowledge about the therapeutic potential of AZC for patients with PM2.5-induced lung injuries remains limited. Thus, in this study, we investigated the protective attributes of AZC against lung damage caused by PM2.5 exposure. AZC was administered to the mice 30 min after intratracheal instillation of PM2.5. Various parameters, such as changes in lung tissue wet/dry (W/D) weight ratio, total protein/total cell ratio, lymphocyte counts, levels of inflammatory cytokines in bronchoalveolar lavage fluid (BALF), vascular permeability, and histology, were evaluated in mice exposed to PM2.5. Data demonstrated that AZC mitigated lung damage, reduced W/D weight ratio, and curbed hyperpermeability induced by PM2.5 exposure. Furthermore, AZC effectively lowered plasma levels of inflammatory cytokines produced by PM2.5 exposure. It reduced the total protein concentration in BALF and successfully alleviated PM2.5-induced lymphocytosis. Additionally, AZC substantially diminished the expression levels of Toll-like receptors 4 (TLR4), MyD88, and autophagy-related proteins LC3 II and Beclin 1. In contrast, it elevated the protein phosphorylation of the mammalian target of rapamycin (mTOR). Consequently, the anti-inflammatory attribute of AZC positions it as a promising therapeutic agent for mitigating PM2.5-induced lung injuries by modulating the TLR4-MyD88 and mTOR-autophagy pathways.

트레드밀 운동이 고지방 식이 쥐 심근세포의 자가포식 관련 단백질 발현에 미치는 영향 (Effect of treadmill exercise on autophagy related protein expression in the cardiac muscle of high-fat diet fed rats)

  • 정재훈;강은범
    • 한국응용과학기술학회지
    • /
    • 제37권1호
    • /
    • pp.91-101
    • /
    • 2020
  • 이 연구는 비만이 심장 조직에서 자가포식 관련 단백질 발현에 미치는 영향을 확인하기 위해 고지방 식이(20주)를 통해 비만을 유도한 후 8주간의 트레드밀 운동을 실시하고, 자가포식의 유도, 형성 그리고 자가포식포와 라이소좀 융합단계를 조절하는 단백질의 발현을 확인하였다. 실험동물(SD rat)은 20주간의 고지방식이(탄수화물: 20%, 지방: 60%, 단백질: 20%)를 통해 비만을 유도하였으며, 8주간의 트레드밀 운동(주 5일, 하루 30분, 5분; 8m/min, 5분; 11m/min, 20분; 14m/min)을 실시하였다. 집단 구분은 정상식이 비교군(n=10), 고지방식이 비교군(n=10), 고지방식이 운동군(n=10)으로 구분하였다. 8주간의 트레드밀 운동 실시 전과 후에 경구당부하검사를 실시하여 곡선 하 면적(area under the curve; AUC)을 산출하였으며, 공복시 인슐린 농도와 포도당 농도를 통해 인슐린 저항성 지표인 HOMA-IR과 체중 당 복부지방량(abdominal visceral fat/Body weight; AVF/BW)를 산출하여 비교하였다. 또한 심장 조직에서 자가포식 관련 단백질을 분석하여 운동 트레이닝의 효과를 검증하였다. 장기간의 고지방식이를 통해 HFD-CON 그룹에서는 비만이 유도되었으며, ND-CON 그룹에 비해 체중, AUC, HOMA-IR, AVF/BW가 증가되는 것으로 나타났다. 하지만 8주간의 트레드밀 운동을 실시한 HFD-TE 그룹에서는 AUC, HOMA-IR, AVF/BW가 개선되는 것으로 나타났다. 체중의 경우, 감소되는 경향은 있었지만, 통계적으로 유의한 차이는 없었다. 자가포식 유도에 관여하는 mTOR와 AMPK는 비만상황에서 모두 감소되었지만, 운동을 통해 증가되는 것으로 나타났다. 자가포식 형성에 관련된 Beclin-1, BNIP3, ATG-7, p62, LC3는 비만상황에서 모두 증가하는 것으로 나타났으며, 운동을 통해 감소되는 것으로 나타났다. 자기포식포와 라이소좀 융합단계 조절하는 Cathepsin L과 LAMP2는 비만상황에서 모두 감소되었으며, 운동을 통해 증가하는 것으로 나타났다. 트레드밀 운동과 같은 신체활동은 대사성 질환에서 나타나는 병리학적 현상을 개선하고 자가포식 과정을 정상적으로 유도하는 것으로 나타났다. 따라서 트레드밀 운동이 심장 관련 질환의 예방 및 치료에 있어 일차적으로 고려해야할 필요성이 있다고 제안한다.

Activation of autophagy at cerebral cortex and apoptosis at brainstem are differential responses to 835 MHz RF-EMF exposure

  • Kim, Ju Hwan;Yu, Da-Hyeon;Kim, Hak Rim
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제21권2호
    • /
    • pp.179-188
    • /
    • 2017
  • With the explosive increase in exposure to radiofrequency electromagnetic fields (RF-EMF) emitted by mobile phones, public concerns have grown over the last few decades with regard to the potential effects of EMF exposure on the nervous system in the brain. Many researchers have suggested that RF-EMFs can effect diverse neuronal alterations in the brain, thereby affecting neuronal functions as well as behavior. Previously, we showed that long-term exposure to 835 MHz RF-EMF induces autophagy in the mice brain. In this study, we explore whether shortterm exposure to RF-EMF leads to the autophagy pathway in the cerebral cortex and brainstem at 835 MHz with a specific absorption rate (SAR) of 4.0 W/kg for 4 weeks. Increased levels of autophagy genes and proteins such as LC3B-II and Beclin1 were demonstrated and the accumulation of autophagosomes and autolysosomes was observed in cortical neurons whereas apoptosis pathways were up-regulated in the brainstem but not in the cortex following 4 weeks of RF exposure. Taken together, the present study indicates that monthly exposure to RF-EMF induces autophagy in the cerebral cortex and suggests that autophagic degradation in cortical neurons against a stress of 835 MHz RF during 4 weeks could correspond to adaptation to the RF stress environment. However, activation of apoptosis rather than autophagy in the brainstem is suggesting the differential responses to the RF-EMF stresses in the brain system.

N-Adamantyl-4-methylthiazol-2-amine suppresses glutamate-induced autophagic cell death via PI3K/Akt/mTOR signaling pathways in cortical neurons

  • Yang, Seung-Ju;Han, A Reum;Choi, Hye-Rim;Hwang, Kyouk;Kim, Eun-A;Choi, Soo Young;Cho, Sung-Woo
    • BMB Reports
    • /
    • 제53권10호
    • /
    • pp.527-532
    • /
    • 2020
  • We recently reported that N-adamantyl-4-methylthiazol-2-amine (KHG26693) attenuates glutamate-induced oxidative stress and inflammation in the brain. In this study, we investigated KHG 26693 as a therapeutic agent against glutamate-induced autophagic death of cortical neurons. Treatment with KHG26693 alone did not affect the viability of cultured cortical neurons but was protective against glutamate-induced cytotoxicity in a concentration-dependent manner. KHG26693 attenuated the glutamate-induced increase in protein levels of LC3, beclin-1, and p62. Whereas glutamate decreased the phosphorylation of PI3K, Akt, and mTOR, these levels were restored by treatment with KHG26693. These results suggest that KHG26693 inhibits glutamate-induced autophagy by regulating PI3K/Akt/mTOR signaling. Finally, KHG26693 treatment also attenuated glutamate-induced increases in reactive oxygen species, glutathione, glutathione peroxidase, and superoxide dismutase levels in cortical neurons, indicating that KHG26693 also protects cortical neurons against glutamate-induced autophagy by regulating the reactive oxygen species scavenging system.

Autophagy Inhibition Promotes Gambogic Acid-induced Suppression of Growth and Apoptosis in Glioblastoma Cells

  • Luo, Guo-Xuan;Cai, Jun;Lin, Jing-Zhi;Luo, Wei-Shi;Luo, Heng-Shan;Jiang, Yu-Yang;Zhang, Yong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권12호
    • /
    • pp.6211-6216
    • /
    • 2012
  • Objective: To investigate the effects of gambogic acid (GA) on the growth of human malignant glioma cells. Methods: U251MG and U87MG human glioma cell lines were treated with GA and growth and proliferation were investigated by MTT and colony formation assays. Cell apoptosis was analyzed by annexin V FITC/PI flow cytometry, mitochondrial membrane potential assays and DAPI nuclear staining. Monodansylcadaverine (MDC) staining and GFP-LC3 localisation were used to detect autophagy. Western blotting was used to investigate the molecular changes that occurred in the course of GA treatment. Results: GA treatment significantly suppressed cell proliferation and colony formation, induced apoptosis in U251 and U87MG glioblastoma cells in a time- and dose-dependent manner. GA treatment also lead to the accumulation of monodansylcadaverine (MDC) in autophagic vacuoles, upregulated expressions of Atg5, Beclin 1 and LC3-II, and the increase of punctate fluorescent signals in glioblastoma cells pre-transfected with GFP-tagged LC3 plasmid. After the combination treatment of autophagy inhitors and GA, GA mediated growth inhibition and apoptotic cell death was further potentiated. Conclusion: Our results suggested that autophagic responses play roles as a self-protective mechanism in GA-treated glioblastoma cells, and autophagy inhibition could be a novel adjunctive strategy for enhancing chemotherapeutic effect of GA as an anti-malignant glioma agent.

Blocking Bcl-2 Leads to Autophagy Activation and Cell Death of the HEPG2 Liver Cancer Cell Line

  • Du, Peng;Cao, Hua;Wu, Hao-Rong;Zhu, Bao-Song;Wang, Hao-Wei;Gu, Chun-Wei;Xing, Chun-Gen;Chen, Wei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권10호
    • /
    • pp.5849-5854
    • /
    • 2013
  • Background: Apoptosis may be induced after Bcl-2 expression is inhibited in proliferative cancer cells. This study focused on the effect of autophagy activation by ABT737 on anti-tumor effects of epirubicin. Methods: Cytotoxic effects of ABT737 on the HepG2 liver cancer cell line were assessed by MTT assay and cell apoptosis through flow cytometry. Mitochondrial membrane potential was measured by fluorescence microscopy. Monodansylcadaverin (MDC) staining was used to detect activation of autophagy. Expression of p53, p62, LC3, and Beclin1, apoptotic or autophagy related proteins, was detected by Western blotting. Results: ABT737 and epirubicin induced growth inhibition in HepG2 cells in a dose- and time-dependent manner. Both ABT737 and epirubicin alone could induce cell apoptosis with a reduction in mitochondrial membrane potential as well as increased apoptotic protein expression. Further increase of apoptosis was detected when HepG2 cells were co-treated with ABT373 and epirubicin. Furthermore, our results demonstrated that ABT373 or epirubicin ccould activate cell autophagy with elevated autophagosome formation, increased expression of autophagy related proteins and LC3 fluorescent puncta. Conclusions: ABT737 influences cancer cells through both apoptotic and autophagic mechanisms, and ABT737 may enhance the effects of epirubicin on HepG2 cells by activating autophagy and inducing apoptosis.

Comparison of Autophagy mRNA Expression between Chronic Otitis Media With and Without Cholesteatoma

  • Jung, Junyang;Jung, Su Young;Kim, Myung Gu;Kim, Young Il;Kim, Sang Hoon;Yeo, Seung Geun
    • Journal of Audiology & Otology
    • /
    • 제24권4호
    • /
    • pp.191-197
    • /
    • 2020
  • Background and Objectives: Autophagy is known to be associated with pathogen infection. However, the expression of autophagy-related proteins has not been studied in chronic otitis media without cholesteatoma (COM) or with cholesteatoma (CholeOM). This study aimed to determine whether there is a difference between COM and CholeOM in autophagy-related gene mRNA expression. Subjects and Methods: For 47 patients with chronic otitis media, the inflammatory tissues were classified into granulation tissue (COM) or cholesteatoma (CholeOM) according to biopsy results. Results: PI3K mRNA expression (COM vs. CholeOM, mean±SD, 0.009±0.010 vs. 0.003±0.004; p=0.004) was lower, whereas Beclin-1 mRNA expression (0.089±0.107 vs. 0.176±0.163; p=0.034) was higher in the CholeOM group. Expression of PI3K mRNA in the CholeOM group was lower than that in the COM subgroups with presence of bacteria (0.022±0.019 vs. 0.001±0.001; p=0.001), otorrhea (0.049±0.068 vs. 0.003±0.004; p=0.004), and hearing loss over 40 dB (0.083±0.130 vs. 0.003±0.004; p=0.005). Conclusions: The data suggested that different autophagy proteins play important roles in chronic otitis media according to the presence or absence of cholesteatoma.

Comparison of Autophagy mRNA Expression between Chronic Otitis Media With and Without Cholesteatoma

  • Jung, Junyang;Jung, Su Young;Kim, Myung Gu;Kim, Young Il;Kim, Sang Hoon;Yeo, Seung Geun
    • 대한청각학회지
    • /
    • 제24권4호
    • /
    • pp.191-197
    • /
    • 2020
  • Background and Objectives: Autophagy is known to be associated with pathogen infection. However, the expression of autophagy-related proteins has not been studied in chronic otitis media without cholesteatoma (COM) or with cholesteatoma (CholeOM). This study aimed to determine whether there is a difference between COM and CholeOM in autophagy-related gene mRNA expression. Subjects and Methods: For 47 patients with chronic otitis media, the inflammatory tissues were classified into granulation tissue (COM) or cholesteatoma (CholeOM) according to biopsy results. Results: PI3K mRNA expression (COM vs. CholeOM, mean±SD, 0.009±0.010 vs. 0.003±0.004; p=0.004) was lower, whereas Beclin-1 mRNA expression (0.089±0.107 vs. 0.176±0.163; p=0.034) was higher in the CholeOM group. Expression of PI3K mRNA in the CholeOM group was lower than that in the COM subgroups with presence of bacteria (0.022±0.019 vs. 0.001±0.001; p=0.001), otorrhea (0.049±0.068 vs. 0.003±0.004; p=0.004), and hearing loss over 40 dB (0.083±0.130 vs. 0.003±0.004; p=0.005). Conclusions: The data suggested that different autophagy proteins play important roles in chronic otitis media according to the presence or absence of cholesteatoma.

Apoptosis and autophagy of muscle cell during pork postmortem aging

  • Chunmei Li;Xialian Yin;Panpan Xue;Feng Wang;Ruilong Song;Qi Song;Jiamin Su;Haifeng Zhang
    • Animal Bioscience
    • /
    • 제37권2호
    • /
    • pp.284-294
    • /
    • 2024
  • Objective: Pork is an important source of animal protein in many countries. Subtle physiochemical changes occur during pork postmortem aging. The changes of apoptosis and autophagy in pork at 6 h to 72 h after slaughter were studied to provide evidence for pork quality. Methods: In this article, morphological changes of postmortem pork was observed through Hematoxylin-eosin staining, apoptotic nuclei were observed by TdT-mediated dUTP nick end labeling assay, protein related to apoptosis and autophagy expressions were tested by western blot and LC3 level were expressed according to immunofluorescence assay. Results: In this study, we found the occurrence of apoptosis in postmortem pork, and the process was characterized by nucleus condensation and fragmentation, formation of apoptotic bodies, increase in apoptosis-related Bax/Bcl-2 levels, and activation of caspases. Autophagy reached its peak between 24 and 48 h after slaughter, accompanied by the formation of autophagosomes on the cell membrane and expression of autophagy-related proteins beclin-1, P62, LC3-I, LC3-II, and ATG5. Conclusion: Obvious apoptosis was observed at 12 h and autophagy reached its peak at 48 h. The present work provides the evidence for the occurrence of apoptosis and autophagy during postmortem aging of pork. In conclusion, the apoptosis and autophagy of muscle cells discovered in this study have important implications for pork in the meat industry.