DOI QR코드

DOI QR Code

Effect of treadmill exercise on autophagy related protein expression in the cardiac muscle of high-fat diet fed rats

트레드밀 운동이 고지방 식이 쥐 심근세포의 자가포식 관련 단백질 발현에 미치는 영향

  • Jeong, Jae-Hoon (Department of Physical Education, Hanyang University) ;
  • Kang, Eun-Bum (Department of Health and Exercise Management, Daejeon University)
  • 정재훈 (한양대학교 체육학과) ;
  • 강은범 (대전대학교 건강운동관리학과)
  • Received : 2020.02.05
  • Accepted : 2020.02.28
  • Published : 2020.02.28

Abstract

The purpose of this study was to investigate the influence of obesity on the expression of autophagy-related proteins in cardiac muscle. To this end, obesity was induced in rats through 20 weeks of high-fat diet, and the animals were then subjected to 8 weeks of treadmill exercise. Subsequently, the expression of proteins that regulate the induction of autophagy, formation of autophagosome, and fusion of autophagosome and lysosome was confirmed. Obesity was induced in the experimental animals (SD rats) through 20 weeks of high-fat diet (carbohydrate: 20%, fat: 60%, and protein: 20%), and they were subsequently subjected to 8 weeks of treadmill exercise (5 days/week, 30 min/day, 5 minutes; 8m/min, 5 minutes; 11m/min, 20 minutes; 14m/min). The experimental groups comprised the normal diet control group (ND-CON, n=10), high-fat diet comparison group (HFD-CON, n=10), and high-fat exercise group (HFD-TE, n=10). Oral glucose tolerance test was conducted before and after 8 weeks of treadmill exercise, and the area under the curve (AUC) was calculated. Through fasting insulin and fasting glucose levels, HOMA-IR, which is an index of insulin resistance, and abdominal visceral fat/body weight (AVF/BW) were calculated for comparison. Moreover, autophagy-related proteins were analyzed from cardiac tissue to investigate the effects of exercise training. Obesity was successfully induced in the HFD-CON group through long-term high-fat diet, and the HFD-CON group had higher body weight, AUC, HOMA-IR, and AVF/BW compared to the ND-CON group. The HFD-TE group, which underwent 8 weeks of treadmill exercise, showed improvements in AUC, HOMA-IR, and AVF/BW. Although the body weight tended to decrease as well, there was no statistically significant difference. mTOR and AMPK, which are involved in the induction of autophagy, both decreased in obesity but increased upon exercise. Beclin-1, BNIP3, ATG-7, p62, and LC3, which are related to the formation of autophagosomes, all increased in obesity and decreased after exercise. Cathepsin L and LAMP2, which regulate the fusion of autophagosome and lysosome, both decreased in obesity and increased upon exercise. Physical activity, including treadmill exercise, was found to induce normal autophagy and improve pathological phenomena observed in metabolic diseases. Therefore, the findings suggest the need to consider treadmill exercise as a primary means to achieve effective prevention and treatment of cardiac diseases.

이 연구는 비만이 심장 조직에서 자가포식 관련 단백질 발현에 미치는 영향을 확인하기 위해 고지방 식이(20주)를 통해 비만을 유도한 후 8주간의 트레드밀 운동을 실시하고, 자가포식의 유도, 형성 그리고 자가포식포와 라이소좀 융합단계를 조절하는 단백질의 발현을 확인하였다. 실험동물(SD rat)은 20주간의 고지방식이(탄수화물: 20%, 지방: 60%, 단백질: 20%)를 통해 비만을 유도하였으며, 8주간의 트레드밀 운동(주 5일, 하루 30분, 5분; 8m/min, 5분; 11m/min, 20분; 14m/min)을 실시하였다. 집단 구분은 정상식이 비교군(n=10), 고지방식이 비교군(n=10), 고지방식이 운동군(n=10)으로 구분하였다. 8주간의 트레드밀 운동 실시 전과 후에 경구당부하검사를 실시하여 곡선 하 면적(area under the curve; AUC)을 산출하였으며, 공복시 인슐린 농도와 포도당 농도를 통해 인슐린 저항성 지표인 HOMA-IR과 체중 당 복부지방량(abdominal visceral fat/Body weight; AVF/BW)를 산출하여 비교하였다. 또한 심장 조직에서 자가포식 관련 단백질을 분석하여 운동 트레이닝의 효과를 검증하였다. 장기간의 고지방식이를 통해 HFD-CON 그룹에서는 비만이 유도되었으며, ND-CON 그룹에 비해 체중, AUC, HOMA-IR, AVF/BW가 증가되는 것으로 나타났다. 하지만 8주간의 트레드밀 운동을 실시한 HFD-TE 그룹에서는 AUC, HOMA-IR, AVF/BW가 개선되는 것으로 나타났다. 체중의 경우, 감소되는 경향은 있었지만, 통계적으로 유의한 차이는 없었다. 자가포식 유도에 관여하는 mTOR와 AMPK는 비만상황에서 모두 감소되었지만, 운동을 통해 증가되는 것으로 나타났다. 자가포식 형성에 관련된 Beclin-1, BNIP3, ATG-7, p62, LC3는 비만상황에서 모두 증가하는 것으로 나타났으며, 운동을 통해 감소되는 것으로 나타났다. 자기포식포와 라이소좀 융합단계 조절하는 Cathepsin L과 LAMP2는 비만상황에서 모두 감소되었으며, 운동을 통해 증가하는 것으로 나타났다. 트레드밀 운동과 같은 신체활동은 대사성 질환에서 나타나는 병리학적 현상을 개선하고 자가포식 과정을 정상적으로 유도하는 것으로 나타났다. 따라서 트레드밀 운동이 심장 관련 질환의 예방 및 치료에 있어 일차적으로 고려해야할 필요성이 있다고 제안한다.

Keywords

References

  1. K. E. Wellen, G. S. Hotamisligil, "Inflammation, stress, and diabetes", The Journal of clinical investigation, Vol.115, No.5, pp. 1111-1119, (2005). https://doi.org/10.1172/JCI25102
  2. Y. Lee, E. B. Kang, I. Kwon, L. Cosio-Lima, P. Cavnar, G. T. Javan, "Cardiac Kinetophagy Coincides with Activation of Anabolic Signaling", Medicine and science in sports and exercise, Vol.48, No.2, 219-226, (2016) https://doi.org/10.1249/MSS.0000000000000774
  3. C. He, D. J. Klionsky,(2009). "Regulation mechanisms and signaling pathways of autophagy", Annual review of genetics, Vol.43, 67-93, (2009). https://doi.org/10.1146/annurev-genet-102808-114910
  4. Mizushima, N., Levine, B., Cuervo, A. M., & Klionsky, D. J. (2008). Autophagy fights disease through cellular self-digestion. Nature, 451(7182), 1069-1075. https://doi.org/10.1038/nature06639
  5. D. Glick, S. Barth, K. F. Macleod, "Autophagy: cellular and molecular mechanisms", The Journal of pathology, Vol.221, No.1, pp. 3-12, (2010). https://doi.org/10.1002/path.2697
  6. S. Sciarretta, D. Yee, V. Shenoy, N. Nagarajan, J. Sadoshima, "The importance of autophagy in cardioprotection", High blood pressure and cardiovascular prevention, Vol.21, No.1, pp.21-28, (2014). https://doi.org/10.1007/s40292-013-0029-9
  7. A. B. Gustafsson, R. A. Gottlieb, "Recycle or die: the role of autophagy in cardioprotection", Journal of molecular and cellular cardiology, Vol.44, No.4, pp.654-661, (2008). https://doi.org/10.1016/j.yjmcc.2008.01.010
  8. S. Lavandero, M. Chiong, B. A. Rothermel, J. A. Hill, "Autophagy in cardiovascular biology", The Journal of clinical investigation, Vol.125, No.1, pp. 55-64, (2015). https://doi.org/10.1172/JCI73943
  9. C. He, M. C. Bassik, V. Moresi, K. Sun, Y. Wei, Z. Zou, Z. An, J. Loh, J. Fisher, Q. Sun, S. Korsmeyer, M. Packer, H. I. May, J. A. Hill, H. W. Virgin, C. Gilpin, G. Xiao, R. Bassel-Duby, P. E. Scherer, B. Levine, "Exercise-induced BCL2-regulated autophagy is required for muscle glucose homeostasis", Nature, Vol.481, No.7382, pp. 511-515, (2012). https://doi.org/10.1038/nature10758
  10. A. M. Sanchez, H. Bernardi, G. Py, R. B. Candau, "Autophagy is essential to support skeletal muscle plasticity in response to endurance exercise", American journal of physiology. Regulatory, integrative and comparative physiology, Vol.307, No.8, pp. R956-969, (2014). https://doi.org/10.1152/ajpregu.00187.2014
  11. V. A. Lira, M. Okutsu, M. Zhang, N. P. Greene, R. C. Laker, D. S. Breen, K. L. Hoehn, Z. Yan, "Autophagy is required for exercise training-induced skeletal muscle adaptation and improvement of physical performance", Federation of American Societies for Experimental Biology, Vol.27, No.10, pp. 4184-4193, (2013). https://doi.org/10.1096/fj.13-228486
  12. A. Boss, V. Lecoultre, C. Ruffieux, L. Tappy, P. Schneiter, "Combined effects of endurance training and dietary unsaturated fatty acids on physical performance, fat oxidation and insulin sensitivity", The British journal of nutrition, Vol.103, No.8, pp. 1151-1159, (2010). https://doi.org/10.1017/S000711450999287X
  13. B. Morio, C. Montaurier, P. Ritz, N. Fellmann, J. Coudert, B. Beaufrere, M. Vermorel, "Time-course effects of endurance training on fat oxidation in sedentary elderly people", International Association for the Study of Obesity, Vol.23, No.7, pp. 706-714, (1999). https://doi.org/10.1038/sj.ijo.0800909
  14. A. Tremblay, E. T. Poehlman, J. P. Despres, G. Theriault, E. Danforth, C. Bouchard, "Endurance training with constant energy intake in identical twins: changes over time in energy expenditure and related hormones", Metabolism, Vol.46, No.5, pp. 499-503. (1997). https://doi.org/10.1016/S0026-0495(97)90184-0
  15. G. A. Kelley, K. S. Kelley, S. Roberts, W. Haskell, "Efficacy of aerobic exercise and a prudent diet for improving selected lipids and lipoproteins in adults: a meta-analysis of randomized controlled trials", BMC medicine, Vol.9, No.74, (2011).
  16. V. B. O'Leary, C. M. Marchetti, R. K. Krishnan, B. P. Stetzer, F. Gonzalez, J. P. Kirwan, "Exercise-induced reversal of insulin resistance in obese elderly is associated with reduced visceral fat", Journal of applied physiology, Vol.100, No.5, pp. 1584-1589, (2006). https://doi.org/10.1152/japplphysiol.01336.2005
  17. H. B. Kim, M. H. Jang, M. C. Shin, B. V. Lim, Y. P. Kim, K. J. Kim, E. H. Kim, C. J. Kim,(2003). "Treadmill exercise increases cell proliferation in dentate gyrus of rats with streptozotocin-induced diabetes", Journal of diabetes and its complications, Vol.17, No.1, pp. 29-33, (2003). https://doi.org/10.1016/S1056-8727(02)00186-1
  18. R. L. Bradley, J. Y. Jeon, F. F. Liu, E. Maratos-Flier, "Voluntary exercise improves insulin sensitivity and adipose tissue inflammation in diet-induced obese mice", American journal of physiology. Endocrinology and metabolism, Vol.295, No.3, pp. E586-E594, (2008). https://doi.org/10.1152/ajpendo.00309.2007
  19. X. Rao, J. Zhong, X. Xu, B. Jordan, S. Maurya, Z. Braunstein, T. Y. Wang, W. Huang, S. Aggarwal, M. Periasamy, S. Rajagopalan, K. Mehta, Q. Sun, "Exercise protects against diet-induced insulin resistance through downregulation of protein kinase Cbeta in mice", Public Library of Science, Vol.8, No.12, pp. e81364, (2013).
  20. J. A. Hawley, S. J. Lessard, "Exercise training-induced improvements in insulin action", Acta physiologica, Vol.192, No.1, pp. 127-135, (2008). https://doi.org/10.1111/j.1748-1716.2007.01783.x
  21. B. A. Irving, C. K. Davis, D. W. Brock, J. Y. Weltman, D. Swift, E. J. Barrett, G. A. Gaesser, A. Weltman, "Effect of exercise training intensity on abdominal visceral fat and body composition", Medicine and science in sports and exercise, Vol.40, No.11, pp. 1863-1872, (2008). https://doi.org/10.1249/MSS.0b013e3181801d40
  22. Y. Zhang, J. R. Sowers, J. Ren, "Targeting autophagy in obesity: from pathophysiology to management", Nature reviews. Endocrinology, Vol.14, No.6, pp. 356-376, (2018). https://doi.org/10.1038/s41574-018-0009-1
  23. E. P. Daskalopoulos., C. Dufeys, C. Beauloye, L. Bertrand, S. Horman, "AMPK in cardiovascular diseases", Experientia. Supplementum. Vol.107, pp. 179-201, (2016). https://doi.org/10.1007/978-3-319-43589-3_8
  24. K. Matsunaga, T. Saitoh, K. Tabata, H. Omori, T. Satoh, N. Kurotori, I. Maejima, K. Shirahama-Noda, T. Ichimura, T. Isobe, S. Akira, T. Noda, T. Yoshimori, "Two Beclin 1-binding proteins, Atg14L and Rubicon, reciprocally regulate autophagy at different stages", Nature cell biology, Vol.11, No.4, pp.385-396, (2009). https://doi.org/10.1038/ncb1846
  25. C. Hiebel, T. Kromm, M. Stark, C. Behl, "Cannabinoid receptor 1 modulates the autophagic flux independent of mTORand BECLIN1-complex", Journal of neurochemistry, Vol.131, No.4, pp. 484-497, (2014). https://doi.org/10.1111/jnc.12839
  26. S. Pons, V. Martin, Portal L, R. Zini, D. Morin, A. Berdeaux, B. Ghaleh, "Regular treadmill exercise restores cardioprotective signaling pathways in obese mice independently from improvement in associated co-morbidities", Journal of molecular and cellular cardiology, Vol.54, pp. 82-89, (2013). https://doi.org/10.1016/j.yjmcc.2012.11.010
  27. J. C. Campos, B. B. Queliconi, P. M. Dourado, T. F. Cunha, V. O. Zambelli, L. R. Bechara, A. J. Kowaltowski,P. C. Brum, D. Mochly-Rosen, J. C. Ferreira, "Exercise training restores cardiac protein quality control in heart failure", Public Library of Science, Vol.7, No.12, pp. e52764, (2012).
  28. N. N. Wu, H. Tian, P. Chen, D. Wang, J. Ren, Y. Zhang, "Physical Exercise and Selective Autophagy: Benefit and Risk on Cardiovascular Health", Cell, Vol.8, No.11, pp. e1436, (2019). https://doi.org/10.3390/cells8111436
  29. H. Zhu, P. Tannous, J. L. Johnstone, Y. Kong, J. M. Shelton, J. A. Richardson, V. Le, B. Levine, B. A. Rothermel, J. A. Hill, "Cardiac autophagy is a maladaptive response to hemodynamic stress", The Journal of clinical investigation, Vol.117, No.7, pp.1782-93, (2007). https://doi.org/10.1172/JCI27523
  30. G. Bjorkoy, T. Lamark, A. Brech, H. Outzen, M. Perander, A. Overvatn, H. Stenmark, T. Johansen, "p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death", The Journal of cell biology, Vol.171, No.4, pp.603-614, (2005). https://doi.org/10.1083/jcb.200507002
  31. Y. T. Zheng, S. Shahnazari, A. Brech, T. Lamark, T. Johansen, J. H. Brumell, "The adaptor protein p62/SQSTM1 targets invading bacteria to the autophagy pathway", Journal of immunology, Vol.183, No.9, pp. 5909-5916. (2009). https://doi.org/10.4049/jimmunol.0900441
  32. X. Ma, H. Liu, S. R. Foyil, R. J. Godar, C. J. Weinheimer, J. A. Hill, A. Diwan, "Impaired autophagosome clearance contributes to cardiomyocyte death in ischemia/reperfusion injury", Circulation, Vol.125, No.25, pp. 3170-3181. (2012). https://doi.org/10.1161/CIRCULATIONAHA.111.041814
  33. X. C. Ma, R. J. Godar, H. Y. Liu, A. Diwan, "Enhancing lysosome biogenesis attenuates BNIP3-induced cardiomyocyte death", Autophagy, Vol.8, No.3, pp. 297-309, (2012). https://doi.org/10.4161/auto.18658