• Title/Summary/Keyword: Bearingless SRM

Search Result 12, Processing Time 0.032 seconds

A Design and Driving Characteristics of Novel Hybrid Pole Bearingless SRM (새로운 하이브리드 극 구조의 베어링리스 SRM 설계 및 운전특성)

  • Lee, Dong-Hee;Wang, Hui-Jun;An, Young-Joo;Ahn, Jin-Woo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.12
    • /
    • pp.2202-2207
    • /
    • 2008
  • Bearingless SRM(Switched Reluctance Motor) is researched for high speed or special applications which can not use mechanical bearing such as bio pump. In this paper, a novel hybrid pole bearingless SRM is presented. The proposed hybrid pole bearingless SRM has salient poles for torque and suspending force production. Motor torque is controlled by the phase currents in torque pole windings, and the suspending force is controlled by suspending currents in four suspending windings for radial direction suspension. Because the proposed bearingless SRM has divided pole structure, mutual effects between torque current and suspending current are very lower than the conventional one's. From this structure, the number of power devices for power converter can be reduced for bearingless SRM driving. The proposed hybrid pole bearing less SRM is verified by the FEM analysis and experimental results.

A Design Method of Bearingless SRM For Suspension Power and Starting Torque (부상력 및 기동 토오크틀 고려한 Bearingless SRM의 기본 설계)

  • Lee, Chan-Gyo;Oh, Ju-Hwan;Kwon, Byung-Il
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.865-866
    • /
    • 2006
  • Bearingless Switched Reluctance Motor(SRM) have combined characteristics of SRM and magnetic bearing. Production of radial force for rotor shaft magnetic suspension is explained with differential stator windings. Bearingless SRM is simple structurally because the permanent magnet does not exist and bearing does not take the influence at the environment because it does not exist and has strong torque, and loss of bearing by bearing current has the advantage not to exist. In this paper, a design method of bearingless SRM for suspension power and starting torque is proposed. The design model is implement by maxwell.

  • PDF

Air Gap Control of Hybride Bearingless SRM (하이브리드극 구조의 베어링리스 SRM 공극 제어)

  • Wang, Huijun;Park, Tae-Hub;Kim, Tae-Hyoung;Lee, Dong-Hee;Ahn, Jin-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.268-270
    • /
    • 2008
  • Bearingless switched reluctance motors (SRM) have combined advantages of conventional SRM and magnetic bearings. Therefore in this paper based on novel structure of Bearingless SRM, an accurate mathematic model of radial force is deduced. Meanwhile in order to realize steady suspending, a novel radial force control method- Direct Instantaneous Radial Force Control (DIRFC) is presented. The effectiveness of new model and DIRFC is proved by the simulation results.

  • PDF

Characteristics Analysis of Suspending Force for Hybrid Stator Bearingless SRM

  • Ahn, Jin-Woo;Lee, Dong-Hee
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.208-214
    • /
    • 2011
  • In this paper, a characteristics analysis and calculation of the suspending force of a novel bearingless switched reluctance motor (BLSRM) with hybrid stator poles is proposed. The operating principle and permeance are calculated to find an appropriate control scheme for a proposed motor. Furthermore, a mathematical model for suspending force is derived. Finite element analysis is also employed to compare with the expressions for suspending force. Finally, the validity of the structure and the mathematical model is verified by simulation results.

Characteristic Analysis of Bearingless SRM with Hybrid Stator Poles (Hybrid극 구조의 베어링리스 SRM 특성해석)

  • Wang, Huijun;Park, Tae-Hub;Lee, Dong-Hee;Ahn, Jin-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2008.04c
    • /
    • pp.6-8
    • /
    • 2008
  • In this paper a novel bearingless switched reluctance motor (SRM) with hybrid stator poles is proposed. The operating principle of proposed motor is also presented. Compared with existing bearingless SRM, it has many advantages such as lower number of switches and cost, simpler control algorithm, lower thermal load. Meanwhile through finite element method (FEM) characteristics of proposed structure such as inductance, torque and radial force can be obtained. According to the FEM results, the above advantages of the proposed structure can be verified.

  • PDF

Design and Analysis of Hybrid Stator Bearingless SRM

  • Lee, Dong-Hee;Ahn, Jin-Woo
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.94-103
    • /
    • 2011
  • This paper presents a novel bearingless switched reluctance motor (BLSRM) with decoupled torque and suspending stator poles. BLSRM is different from conventional bearingless switched reluctance motors (SRMs) because its suspending poles are separated from the torque poles. Perpendicularly placed suspending poles are designed to produce a continuous radial force to suspend the rotor. Due to the independent suspending and torque poles, BLSRM produces a suspending force with excellent linearity according to the rotor position and independent characteristics of the torque current. The air-gap is easier to control than in conventional SRMs with their linear and independent characteristics. Furthermore, to verify the proposed structure, a mathematical model for the suspending force is derived. Finite element analysis is also employed to compare BLSRM and conventional SRMs expressions of suspending force. A prototype motoris designed and manufactured to verify the effectiveness of the proposed bearingless structure.

High Speed Direct Current Control for the 8/10 Bearingless SRM (8/10 베어링리스 SRM의 고속 직접전류제어)

  • Guan, Zhongyu;Ahn, Jin-Woo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.5
    • /
    • pp.690-697
    • /
    • 2012
  • Novel 8/10 bearingless switched reluctance motor, which can control rotor radial positions with magnetic force, is proposed. The motor has combined characteristics of switched reluctance motor and magnetic bearing. This paper proposes a air-gap control system method of suspending force control in a bearingless switched reluctance motor (BLSRM). The proposed radial force control scheme is independent to the torque winding current. A PI direct current control (DCC) controller and look-up table are used to maintain a constant rotor air-gap. From the analysis and the experimental results, it is shown that the proposed strategy is effective in realizing a naturally decoupled radial force control of BLSRM.

Rotor Pole Design and Characteristics Analysis of the Bearingless Switched Reluctance Motor Considering Fringing Flux (프린징 자속을 고려한 베어링리스 SRM 회전자극 설계 및 특성분석)

  • Lee, Chan-Kyo;Oh, Ju-Hwan;Shin, Kwang-Chul;Kwon, Byung-Il
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.1
    • /
    • pp.57-64
    • /
    • 2010
  • In this paper, a novel Bearingless Switched Reluctance Motor(BLSRM) with the shoe rotor pole in order to minimize the torque ripple and the suspension force ripple at an overlap position is proposed. For reduction the torque ripple and the suspension force ripple at an overlap position, the fringing flux is used for the main flux. This configuration of the rotor pole results in more average torque with high suspension force. In addition, this paper is compared the transient characteristics using the inductance look-up table. The torque, radial force and flux density are analyzed by finite element method.

Characteristic Analysis of Bearingless SRM with Hybrid Stator Poles (서스펜션 포스 극을 가지는 베어링리스 SRM의 특성)

  • Wang, Hui-Jun;Kim, Tae-Hyoung;Park, Tae-Hub;Lee, Dong-Hee;Ahn, Jin-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.661-662
    • /
    • 2008
  • In this paper a novel bearingless switched reluctance motor (BLSRM) with hybrid stator poles is proposed. The operating principle of the proposed motor is presented. Further one prototype motor is designed and manufactured. Compared with existing BLSRM, it has many advantages such as lower number of switches and cost, simpler control algorithm, lower thermal load. Meanwhile through finite element method (FEM) characteristics of the proposed structure such as inductance, torque and radial force can be obtained. According to the FEM results, the above advantages of the proposed structure can be verified.

  • PDF

Design and Analysis of Novel 12/14 Hybrid Pole Type Bearingless Switched Reluctance Motor with Short Flux Path

  • Xu, Zhenyao;Zhang, Fengge;Lee, Dong-Hee;Ahn, Jin-Woo
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.5
    • /
    • pp.705-713
    • /
    • 2012
  • In this paper, a novel 12/14 hybrid pole type bearingless switched reluctance motor (BLSRM) with short flux path and no flux-reversal in the stator is proposed. The proposed BLSRM has separated rotating torque and suspending force poles. Because of independent characteristics between torque and suspending force poles, the torque control can be decoupled from the suspending force control. Due to the short flux path without any reversal flux, compared to the 8/10 hybrid stator pole BLSRM, the output torque is significantly improved and the air-gap is easier to control. Meanwhile, basic design principle for the proposed structure is described. To verify the proposed structure, finite element method (FEM) is employed to get characteristics of the proposed structure and 8/10 hybrid stator pole BLSRM. Based on the analysis, a prototype of the proposed BLSRM is designed and manufactured. Finally, validity of the proposed structure is verified by the experimental results.